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Abstract

The Internet of Things (IoT) – the notion that interconnected everyday objects
will acquire the ability to monitor and act upon their environment – is antici-
pated to benefit multiple domains, including manufacturing, health and social
care, finance, and within the home. However, a plethora of security and trust
concerns surround the deployment of millions of devices that transmit sensing
data to inform critical decision-making, with potentially serious consequences
for end-users. Trusted Execution Environments (TEEs) are emerging as a robust
and widely-available solution for protecting the confidentiality and integrity
of sensitive applications on IoT devices. TEEs continue a succession of secure
execution technologies, including smart cards and embedded Secure Elements,
by employing hardware-assistance for protecting run-time accesses to sensitive
memory locations, input/output (I/O) devices, and persistent data. TEEs can
also provide many of the mechanisms provided by other trusted computing
primitives, namely the Trusted Platform Module (TPM), like remote attestation.

Given their recent inception, however, TEEs lack the maturity and the ecosys-
tem of long-standing solutions such as TPMs, particularly for constrained devices.
This thesis identifies and analyses a multitude of such challenges, resulting in the
proposal and evaluation of contributions in five areas of concern. This includes
applying TEEs to sensor-driven continuous authentication schemes, an emerging
paradigm for addressing the shortfalls of conventional biometrics; secure and
mutually trusted communication between two TEEs on remotely located devices;
tamper-resistant system logging for constrained platforms with TEEs; remote
TEE credential management with respect to centralised IoT deployments, e.g.
smart cities and industrial IoT; and a critical evaluation of proposed solutions to
relay attacks in contactless transactions, to which existing TEEs are vulnerable.
This thesis concludes by identifying open research challenges surrounding the
deployment and management of constrained device TEEs in IoT applications.
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Chapter 1

Introduction

The Internet of Things (IoT) – the notion that everyday objects will monitor
and potentially actuate upon the environment – is anticipated to significantly
benefit a number of domains, such as manufacturing, logistics, health and social
care, financial services, personal fitness, and home efficiency. Many potential
applications within these areas are long-standing, including early detection of
illness using wearable physiological monitors [1]; improving energy conservation
using room occupancy data [2]; floor sensors for fall/injury detection in the
homes of the elderly and disabled [3]; and the monitoring of ambient conditions
to protect perishable foods in transit [4] and livestock at rest [5].

However, only in recent years have technological and economic factors con-
verged so relatively small, powerful and sensor-rich devices are available at
unprecedented cost. This has been driven by advances in high-density IC1

fabrication techniques, e.g. Ball Gate Array (BGA) – described in Chapter 2 –
System-on-Chip (SoC) architectures, and the mass-production of passive and
active sensors, like GPS2 and tri-axial inertial measurement units (IMUs). Now,
modern single-board computers (SBCs), most famously the credit-card sized
Raspberry Pi 33 available at $35 (USD), often contain quad-core CPUs, multi-
gigabyte RAM modules, embedded GPUs, and can host a fully-fledged OS. Such
devices are capable of performing high-definition video playback; selected com-
puter vision tasks, e.g. motion and object detection; the collection of various
environmental measurements from I/O devices; and utilise a range of wireless
mediums, like Wi-Fi (IEEE 802.11n) and Bluetooth.

Small, powerful devices are useful as standalone devices, say, as compact
home media centres; however, it is the synergy of multiple data-rich devices,
alongside the application of data analytics and machine learning techniques,
that fuels the high expectations surrounding IoT. In fitness monitoring, systems
such as Fitbit4 and the Nike FuelBand5 allow users to visualise their progress

1IC: Integrated Circuit.
2GPS: Global Positioning System.
3Raspberry Pi 3: https://www.raspberrypi.org/
4Fitbit: https://www.fitbit.com/
5Nike FuelBand: https://secure-nikeplus.nike.com/plus/what_is_fuel/

https://www.raspberrypi.org/
https://www.fitbit.com/
https://secure-nikeplus.nike.com/plus/what_is_fuel/
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from aggregated physiological and contextual measurements, such as location,
step-count and heart rate. This allows users to reflect on their progress and, if
necessary, reconfigure their fitness regimes to attain their desired goals. In freight
transportation, it is proposed to deploy sensing platforms in long-haul vehicles
that to report environmental variables, e.g. humidity and temperature, in order
to raise alarms and reactively trigger environmental control systems if conditions
deviate from safe parameters [4], [5]. In smart homes, commercial systems already
exist that intelligently control the brightness and colour of ambient lighting, e.g.
Phillips Hue6; control the temperature of central heating; and report household
energy usage to a smartphone or smartwatch (see Nest7).

The forecasted number of deployed IoT devices differs widely according
to device classification. Gartner [6] estimates the number of Internet of Things
(IoT) devices to reach 20.8 billion by 2020, excluding smartphones and tablets.
Meanwhile, Statista [7] forecast the number of installed IoT devices to reach
30.73 billion in 2020 before reaching 74.55 billion by 2025. In financial terms, a
2017 report by IDC [8] projected that global IoT spending is, on average, due
to grow annually at 15.6% over the 2015-2020 forecast period – reaching $1.29
trillion (USD) by 2020. According to the same report, the largest investments
in 2016 originated from manufacturing ($178bn), focussing on field servicing
and production asset management; transportation ($78bn), primarily for freight
condition tracking; and utilities ($69bn), for electricity and gas infrastructure
monitoring. IDC state that insurance telematics is the leading use case in financial
services, while “remote health monitoring will see the greatest investment in the
healthcare industry” [8].

Business and industrial IoT purchases are generally projected to exceed con-
sumer sales. A 2017 report by PwC [9] estimated that business IoT spending will
reach $832bn in 2020 (from $215bn in 2015), with only $236bn in 2020 (from $72bn
in 2015) coming from consumer spending. This sentiment is shared by Bain &
Company [10], who estimate business-to-business (B2B) IoT sales to reach $300bn
annually by 2020, while consumer applications will, by the same year, generate
approximately $150bn. While scepticism has been directed at some projected
figures – notably IBM’s 2012 forecast of one-trillion connected devices by 2015 –
the trend of billions of connected devices is shown to generally hold [11].

1.1 Motivation

In the face of high expectations, the prospect of billions of connected devices
raises a plethora of severe security, trust and privacy challenges. An obvious

6Phillips Hue: https://www.philips.co.uk/c-m-li/hue
7Nest: https://nest.com/uk/

https://www.philips.co.uk/c-m-li/hue
https://nest.com/uk/
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security concerns is the participation of millions of small, powerful and Internet-
connected devices launching Distributed Denial of Service (DDoS) attacks. In
2014, Symantec discovered the Linux.Darlloz worm that exploited a PHP
vulnerability to infect home routers, printers and industrial control monitors
in order to mine cryptocurrencies [12]. The Mirai botnet, discovered in August
2016, infected up to 2.5 million devices according to McAfee [13], including IP
web cameras, digital cameras, set-top boxes, home routers and printers. The
botnet was responsible for a 620GB/s attack targeting the security blog Krebs on
Krebs8 and a 1TB/s DDoS attack, believed to be the largest ever recorded [12], on
French web host OVH and the DNS provider Dyn. Mirai exploited insecurely
configured default usernames and passwords for administrative accounts, and
caused outages to Github, Twitter, Reddit, Netflix and Airbnb [14].

While DDoS attacks are undoubtedly costly, it is the effect of malware on
devices responsible for the monitoring of manufacturing equipment, critical in-
frastructure, sensitive substances in logistics, or assistive health and social care
technologies that raise the gravest concerns [15], [16]. A compromised sensing
device that surreptitiously feeds falsified measurements, e.g. temperature and
battery consumption, to a reactive control system could disrupt its operation or
falsely suppress alarms. At worst, devices may endanger personnel and indus-
trial equipment if it influences climate controls or heavy machinery. In assistive
technologies, compromised fall or object detection systems could endanger vul-
nerable users [17]. Falsified sensor measurements within transport monitoring
systems, such as temperature monitors in rail-lines and train brakes [18], could
conceal the presence of dangerous environmental conditions and operating pa-
rameters. In finance, malicious telematics data may allow users to construe an
intentionally misleading model of behaviour to attain inaccurate insurance pre-
miums. While not presented in this thesis, our previous work [19] showed that
untrustworthy sensor data is one of the greatest risks facing the deployment of
IoT in financial applications.

Economic factors, moreover, are of little help: IoT devices are often manufac-
tured to a minimal price-per-unit, and competitive pressures from being the ‘first
to market’ can lead to security and privacy concerns playing a secondary role [15],
[20], [21]. Timely patch development, and the adoption thereof, has already been
identified as a major IoT security issue, particularly for smaller vendors who lack
the capability to quickly remedy potentially millions of devices [20].

While various software security countermeasures exist – application sand-
boxing, shadow stacks, and user-input sanitisation – these are not used solely
for protecting the most sensitive assets. This is principally the concern for key
material, biometrics and other credentials used to authenticate devices (and their

8Krebs on Krebs: https://krebsonsecurity.com/

https://krebsonsecurity.com/
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users) in operations with potentially damaging consequences to end-users. A
severe enough vulnerability – an unsecured network port, unsatisfactory crypto-
graphic parameters, or even a social engineering attack – in the ‘wrong’ IoT device
and environment could enable an attacker to potentially endanger users, whether
physically, financially or otherwise. Indeed, the perceived trustworthiness of
devices may be the differentiating factor in realising the projected potential of
IoT. A 2014 report into the Internet of Things by the UK Government’s Chief
Scientific Advisor stated that, while “real value is created for businesses, consumers
and governments [by IoT]...a major data breach or cyber-attack is likely to have extremely
damaging consequences on public attitudes” [22]. Secure and trustworthy computing
is vital in deployments that require increased levels of assurances that IoT devices
are performing to expectations in order to mitigate the rise of harmful behaviour.
For further reading, the reader is directed to surveys on security and trust in IoT
security by Scelari et al. [23] (general introduction and security challenges), Yen
et al. [24] (trust management), Islam et al. [25] (IoT and healthcare), and Nguyen
et al. [26] (secure communication protocols).

One major security countermeasure in recent years has been Security-Enhanced
Linux (SELinux) [27], initially developed by the US National Security Agency
(NSA), which provides mandatory access control to the Linux kernel. SELinux
utilises policies that define the operations that each system object, say, a process,
may perform on its subjects, such as files and I/O devices. Through appropriate
policy definition, which is itself a difficult task in continually evolving systems,
unsafe processes can be executed without compromising safe processes. While
SELinux is an important construct for protecting server and Android devices [28],
it is still wholly software-based. Following the principle of security in layers,
hardware-assisted trusted computing has been employed to protect the assets of
the most sensitive application domains, particularly in banking and biometrics.
Here, inherently trusted hardware components – also known as a hardware Root
of Trust (RoT) – are used to enforce access control; perform cryptographic opera-
tions, such as tamper-resistant key generation and storage; and for interacting
with sensitive Input/Output (I/O) peripherals, such as fingerprint readers. Many
of these technologies also allow remote parties to gain assurances that the target
platform is executing to expectations using remote attestation. The most prominent
examples of these technologies include the Trusted Platform Module (TPM) and
Secure Element (SE), described in greater detail in Chapter 2.

One of the major drawbacks of for many hardware-assisted mechanisms is
the requirement for additional hardware, which increases costs and occupies
limited PCB space on constrained devices. Moreover, these mechanisms are often
relatively limited computationally, and offer a reduced feature set compared to
the main execution environment, also known as the Rich Execution Environment
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(REE). TPMs, for example, do not natively provide isolated application execution,
while SEs lack the ability to gather evidence of boot components (measured boot)
and securely providing such evidence to remote verifiers (remote attestation). An
increasingly popular solution is the Trusted Execution Environment (TEE), which
provides SE-like secure and isolated application execution, as well as TPM-like
trust mechanisms like remote attestation. Notable TEEs include Intel SGX and
the GlobalPlatform TEE specifications, which are also explored further in Chapter
2.

However, TEEs are relatively new and lack the maturity of previous solutions,
such as the TPM, especially in their use in protecting embedded sensing de-
vices. This thesis identifies a number of challenges surrounding the use of TEEs
in this domain, such as their application in protecting emerging sensor-based
authentication technologies (continuous authentication), mutual TEE remote
attestation, tamper-resistant system logging and remote credential management
in centralised IoT deployments. Throughout this thesis, implementations on
genuine TEEs are used frequently in order to evaluate the real-world practicality
of the proposed schemes. Formal symbolic verification is also used heavily in
the proposal of any protocols and procedures for assuring correctness against the
stated adversarial models. Lastly, this thesis goes one step further to examine
state-of-the-art attacks that are not protected by current TEEs, namely relay attacks,
on NFC-based contactless transactions used in many payment, transportation
and physical access control systems.

1.2 Thesis Outline and Contributions

Chapter 2 serves as a primer for the remainder of this thesis by introducing
and describing the architecture and relative computational capability of modern
mobile and embedded systems. This is followed by a detailed review of hardware-
assisted secure and trusted execution technologies for protecting such systems,
ranging from traditional solutions, such as smart cards and TPMs, to the most
recent advancements like Intel SGX and the GlobalPlatform TEE specifications.
This chapter also includes a security and feature comparison of each technology
and, where applicable, a discussion of relevant industry standards, including the
Common Criteria framework for platform security evaluation. This chapter is a
substantially expanded version of our following published work in [29]:

• C. Shepherd, G. Arfaoui, I. Gurulian, R. P. Lee, K. Markantonakis, R. N.
Akram, D. Sauveron, and E. Conchon. “Secure and Trusted Execution:
Past, Present and Future – A Critical Review in the Context of the Inter-
net of Things and Cyber-Physical Systems,” in Proceedings of the 15th IEEE
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International Conference on Trust, Security and Privacy in Computing and Com-
munications, ser. TrustCom ’16, IEEE, 2016, pp. 168-177.

The first core contribution of this thesis is presented in Chapter 3, which in-
vestigates the application of secure and trusted execution technologies to provide
additional security assurances for Continuous Authentication (CA). CA is an
emerging user-authentication paradigm that employs machine learning to model
user behaviour in order to infer the device’s authentication state from sensing
data. This chapter is an extended version of our following publication in [30]:

• C. Shepherd, R. N. Akram, and K. Markantonakis. “Towards Trusted Exe-
cution of Multi-Modal Continuous Authentication Schemes,” in Proceedings
of the 32nd ACM Symposium on Applied Computing, ser. SAC ’17, ACM, 2017,
pp. 1444-1451.

Chapter 4 develops the concept of remote attestation in greater detail, and
raises the challenge of mutual attestation and TEE-to-TEE intercommunication in
which TEEs aboard remotely located devices wish to communicate in a secure
and trusted fashion with mutual trust assurances. To this end, we present the
first investigation into achieving this in a single protocol run for TEEs, which is
implemented and evaluated on two devices hosting GlobalPlatform-compliant
TEEs. The proposed protocols are also subjected to symbolic formal verification
using the Scyther analysis tool. This chapter is based on the following work in
[31]:

• C. Shepherd, R. N. Akram, and K. Markantonakis. “Establishing Mutually
Trusted Channels for Remote Sensing Devices with Trusted Execution Envi-
ronments,” in Proceedings of the 12th International Conference on Availability,
Reliability and Security, ser. ARES ’17, ACM, 2017, 7:1-7:10.

Chapter 5 presents this thesis’s third core contribution: EmLog – a novel
tamper-resistant logging scheme for preserving system logs on constrained de-
vices with TEEs, with potential applications in IoT device forensics and auditing.
This chapter is based on our work in [32]:

• C. Shepherd, R. N. Akram, and K. Markantonakis. “EmLog: Tamper-
Resistant System Logging for Constrained devices with TEEs,” in Proceed-
ings of the 11th IFIP International Conference on Information Security Theory
and Practice, ser. WISTP ’17, Springer, 2018.

Following this, Chapter 6 addresses the open challenge of secure and trusted
remote credential management for constrained sensing devices in centralised
IoT environments. A suite of protocols is introduced, motivated, proposed
and analysed for the revocation, migration, backup and update of TEE-based
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device credentials, as well as the retrieval of audit system logs as an additional
development of our work from Chapter 5. This chapter is based on the following
work in [33]:

• (In Press) C. Shepherd, R. N. Akram, and K. Markantonakis. “Remote
Credential Management with Mutual Attestation for Trusted Execution
Environments,” in Proceedings of the 12th IFIP International Conference on
Information Security Theory and Practice, ser. WISTP ’18, Springer, 2019.

The penultimate chapter of this thesis, Chapter 7, segues into a long-standing
challenge in NFC-based contactless transactions – relay attacks – that circumvent
even the protection offered by TEEs. In this chapter, a series of past proposals
based on ambient sensing for thwarting relay attacks are evaluated for their
effectiveness. This work assesses 15 sensors available through the Android plat-
form and, using data collected from an emulated relay attack setup, uses an
array of similarity- and supervised machine learning-based methods proposed
in existing literature. The results indicate that, under industry-stipulated time
constraints, no single evaluated sensor is appropriate for use in high-value trans-
actions without significantly detracting from security and usability. This chapter
is an aggregation of our work presented in the following papers in [34]–[36]:

• C. Shepherd, I. Gurulian, E. Frank, K. Markantonakis, R. N. Akram, K.
Mayes, and E. Panaousis. “The Applicability of Ambient Sensors as Prox-
imity Evidence for NFC Transactions,” in Mobile Security Technologies, IEEE
Security and Privacy Workshops, ser. SPW ’17, IEEE, 2017.

• I. Gurulian, C. Shepherd, E. Frank, K. Markantonakis, R. N. Akram, and
K. Mayes. “On the Effectiveness of Ambient Sensing for NFC-based Prox-
imity Detection by Applying Relay Attack Data,” in Proceedings of the 16th
IEEE International Conference on Trust, Security and Privacy in Computing and
Communications, ser. TrustCom ’17, IEEE, 2017.

• (Invited Paper) I. Gurulian, K. Markantonakis, C. Shepherd, E. Frank, and
R. N. Akram. “Proximity Assurances Based on Natural and Artificial
Ambient Environments,” in Proceedings of the 10th International Conference on
Innovative Security Solutions for Information Technology and Communications,
ser. SECITC ’17, Springer, 2017.

Additional supplementary work was also conducted in [37], but is not presented
as a core contribution of this thesis. The final chapter, Chapter 8, concludes this
thesis and presents several open challenges with respect to constrained device
TEEs and secure and trusted sensing.
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Chapter 2

Background

This chapter describes the motivation, capability, architectures and evolution of
computing platforms designed to realise secure and trusted execution of security-
critical applications and data.

2.1 Mobile and Embedded System Architectures

A mobile system, as contained within a smartphone or tablet, is a portable comput-
ing system that can be used for general-purpose computing, such as video/audio
file playback, sending/receiving SMSs and electronic mail, and accessing video
games. An embedded system, meanwhile, is a computing system with a dedicated
function, potentially with real-time computing constraints, and exists within a
larger mechanical or electrical system. It may or may not be portable.

The precise computational capability of a mobile or embedded system is
difficult to define given the continuing technological advancements in processor
design, semiconductor fabrication techniques, and deflationary hardware prices.
However, both mobile and embedded devices are associated with low power
consumption, smaller physical size, lower cost per unit, and limited processing
capacity relative to a workstation or supercomputer.

Modern personal devices, such as digital TVs, fitness monitors, baby monitors
and smartwatches, rely heavily upon embedded systems. As do more complex
units like vehicle subsystems, e.g. collecting and transmitting telematics data,
such as location and speed; digital kitchen appliances, e.g. washing machines
and microwaves; and for controlling heating, ventilation and air conditioning
(HVAC) units. Due to their computational limitations, embedded systems are
deployed typically with fewer software applications and an operating system
(OS) with reduced functionality. For the smallest microcontroller-based devices,
only a single dedicated application may be available. For applications requiring
greater flexibility and computational power, such as arcade systems and home
media centres, single-board computers (SBCs) can be used that host a general
purpose OS, like Linux, and multiple applications. The differences between
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microcontrollers, SBCs and, indeed, System-on-Chips (SoCs) are discussed in
greater detail in the following sections.

2.1.1 System-on-Chip (SoC)

A System-on-Chip (SoC) incorporates the components of a computing system –
the CPU, memory units (RAM1, ROM2, EEPROM3 and flash memory), system
buses, real-time clocks (RTCs), analog-to-digital converters and vice-versa (ADCs
and DACs), timers etc. – onto a single integrated circuit (IC). SoCs were devel-
oped from the need for greater power efficiency, smaller product PCBs (printed
circuit boards), and lower assembly costs [38]. This is achieved through the
removal of redundant components and the reduction of wiring distances and
material, thus improving power and cost efficiency. SoCs allow the installation of
only a single chip during assembly as opposed to its individual sub-components.

A SoC’s exact components and capabilities varies between vendors and the
intended application. The NVIDIA Tegra X14, for example, comprises a 256-core
GPU for applications requiring high-definition graphics rendering, such as gam-
ing and video playback. The Texas Instruments TDA2x5 contains interfaces for
six camera inputs, CAN bus connectivity, digital video output and Audio Video
Bridging (AVB) support for low-latency video streaming intended for automobile
park assist systems. The hardware design of SoC components typically begins
with pre-built initial IP blocks (cores) that are selected and integrated to the
vendor’s specifications; any proprietary, application-specific components can
be integrated thereafter. The designed SoC is usually tested and validated for
correctness using software-based emulation and FPGA prototypes (functional
verification) before being fabricated physically on substrate.

Some of the most common SoC components are described below, while an
example ARM-based SoC is depicted in Figure 2.1.

• CPU. The ARM Cortex-A/-M/-R CPUs are virtually ubiquitous in modern
SoCs. The Cortex-A line is designed for high performance applications,
supports 32- or 64-bit execution and virtual memory via a Memory Man-
agement Unit (MMU), and is capable of running a fully-featured OS. The
Cortex-M family, aimed at low-cost systems such as microcontrollers (Sec-
tion 2.1.3), do not feature full MMUs and contain a smaller instruction set.
Indeed, some models, e.g. Cortex-M0 and -M3, do not even support divi-
sion or floating point operations. Cortex-R processors cater for real-time

1RAM: Random Access Memory.
2ROM: Read-Only Memory.
3EEPROM: Electrically Erasable Programmable Read-Only Memory.
4NVIDIA Tegra: http://www.nvidia.com/object/tegra.html
5Texas Instruments TDA2x: http://www.ti.com/lit/ml/sprt681/sprt681.pdf

http://www.nvidia.com/object/tegra.html
http://www.ti.com/lit/ml/sprt681/sprt681.pdf
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FIGURE 2.1: High-level ARM-based SoC architecture [39].

systems requiring deterministic timing and low interrupt latency; how-
ever, like the Cortex-M, there is no full MMU support. SoCs may contain
multiple processors – Multiple Processor SoCs, or MPSoCs – in which sub-
components, such as sensor hubs, contain their own CPU. These CPUs
control further sub-units, like individual sensors, to reduce the number of
interrupts to the primary SoC for greater power conservation.

• Interrupt controllers, e.g. the ARM Generic Interrupt Controller (GIC),
are IP cores that monitor and collate interrupt requests (IRQs) and urgent,
low-latency fast interrupt requests (FIQs) from other SoC modules. Such
controllers are used to combine interrupts onto one or more CPU lines,
to control and issue CPU interrupt requests only when necessary, and in
managing request prioritisation.

• Memory. Any number of ROM, RAM and flash memory blocks may be
incorporated into an SoC design. The ROM is a non-writable medium
typically used for holding power-on self-test (POST) routines, passing the
boot control flow to the main bootloader – often held in flash memory –
and acting as a root of trust (RoT) for implementing secure boot (discussed
in Sections 2.3 and 2.4.4). Faster but more expensive Static Random Access
Memory (SRAM) is used for processor caches, while slower but lower-cost
Dynamic RAM (DRAM) is usually used for general-purpose storage of
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application data under execution. Flash memory is re-writeable6, non-
volatile memory used for long-term persistent data storage, including
hosting rewritable firmware. (The rewriting of flash-resident firmware is
also known as ‘flashing’).

• Input/Output (I/O). SoCs receive and transmit information with the out-
side world – collecting sensor data, receiving commands over a keypad,
outputting data to an LCD display, and so on – over a multitude of I/O
interfaces. Most SoCs support several interfaces, like the Serial Peripheral
Interface (SPI), Universal Asynchronous Receiver-Transmitter (UART), Uni-
versal Serial Bus (USB), General Purpose I/O (GPIO), and Ethernet. Some
specialist SoCs provide domain-specific interfaces, such as a Controller
Area Network (CAN) bus interface for vehicular systems.

• Memory controllers contain the logic for reading/writing to RAM, like
implementing double-data rate (DDR) transfers7, and wear-levelling for
flash memory controllers in which read/writes are distributed over blocks
to prevent uneven degradation. Other controllers include Direct Memory
Access (DMA) controllers for allowing I/O devices to directly read/write
data to RAM independently of the CPU. This improves energy efficiency by
eliminating interruptions that occupy the CPU during the acquisition and
transfer of I/O data to RAM. I/O Memory Management Units (IOMMUs)
are also used to prevent DMA-enabled peripherals from manipulating
unauthorised RAM (DMA attacks). This is achieved by isolating memory
space through the translation of virtual addresses visible to the peripherals
to the host’s physical addresses.

• Testing and debugging manufactured PCBs was standardised by the Joint
Test Action Group (JTAG) in the IEEE 1149 series [40]. JTAG access ports
are ubiquitous on modern SoCs, FPGAs (field-programmable gate arrays),
and microcontrollers. JTAG is used for verifying potentially thousands of
IC connections without testing each pin manually – a practically infeasible
task for modern high-density circuits. In addition to testing PCB intercon-
nects (boundary scan), JTAG is used for inspecting registers and memory,
initialising flash memory, and re-flashing corrupt firmware.

• Buses and bridges are the mediums through which the SoC’s subcompo-
nents are connected and data is transferred. The ARM Advanced Microcon-
troller Bus Architecture (AMBA) is a common standard for defining SoC

6Note that flash memory blocks degrade with use. The electrical energy dispersed during
erasure procedures causes the silicon substrate to degrade a small amount; over time, even error-
correcting codes fail to compensate and the medium loses reliability before, ultimately, failing.
Manufacturers guarantee flash memory within a certain number of Program/Erase (P/E) cycles.

7DDR data transfers on both the rising and falling edges of the clock, or two per clock cycle.
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buses and interconnects. This includes the Advanced High-performance
Bus (AHB) and Advanced eXtensible Interface (AXI) specifications for high
bandwidth, high clock frequency blocks like the CPU and RAM, and the
Advanced Peripheral Bus (APB) for low bandwidth peripherals, e.g. via
UART and USB. Bridges are used to translate transactions between differing
bus architectures, such as AXI to APB and vice-versa.

• Security. SoCs may contain security-centric blocks that provide hardware
implementations of widely-used cryptographic algorithms, such as AES,
(3)DES, SHA-256 and RSA, and hardware-based pseudo-random number
generators (PRNGs). All of these may be integrated into a security co-
processor block or provided separately. One of the most popular security
extensions for ARM-based SoCs is TrustZone for establishing a secure world
of execution, which is described in greater detail in Section 2.4.4.

• Wireless communication. Silicon vendors can integrate wireless mediums
directly onto the SoC (see the Nordic Semiconductor nRF518228). This may
include transceivers for Near-Field Communication (NFC), Bluetooth LE
(Low Energy), WiFi (IEEE 802.11), and ZigBee (IEEE 802.15.4).

• Video and audio. Specialist SoCs may contain GPU blocks for delivering
high quality video at low frame rates. One such SoC, the NVIDIA Tegra,
contains a 256-core NVIDIA Maxwell GPU supporting DirectX 12, OpenGL
4.5, NVIDIA CUDA, OpenGL ES 3.1 and Vulkan. Hardware-based video
codec processors are also provided, e.g. for H.265 and MPEG4, and support
for HDMI output. Home media centre SoCs, e.g. Freescale STMP37009,
may also feature headphone and speaker amplifiers; high quality audio
ADCs and DACs; and FM radio, microphone and line input support.

2.1.2 System-in-Package (SiP) and Package-on-Package (PoP)

A System-in-Package (SiP) refers to the stacking of several dies into a single physi-
cal package. This is opposed to SoCs, which fabricate a system onto a single die.
SiPs enable greater flexibility by allowing the co-existence of SoC and IC dies from
different silicon vendors, but adds additional complexity relating to die place-
ment, package design, and thermal and (electromagnetic) noise management [41].
An example SiP is the Apple S210 used in the Apple Watch.

8Nordic Semiconductor nRF51822: https://www.nordicsemi.com/eng/Products/
Bluetooth-low-energy/nRF51822

9Freescale STMP3700: https://www.nxp.com/docs/en/fact-sheet/STMP3700FS.
pdf

10Apple S2: https://www.apple.com/newsroom/2016/09/
apple-introduces-apple-watch-series-2/

https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF51822
https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF51822
https://www.nxp.com/docs/en/fact-sheet/STMP3700FS.pdf
https://www.nxp.com/docs/en/fact-sheet/STMP3700FS.pdf
https://www.apple.com/newsroom/2016/09/apple-introduces-apple-watch-series-2/
https://www.apple.com/newsroom/2016/09/apple-introduces-apple-watch-series-2/
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Original Equipment Manufacturers (OEMs) may also incorporate Package-
on-Package (PoP) designs in which several IC packages are stacked and soldered
vertically using BGA onto a mounting PCB (see Figure 2.2). This naturally utilises
less PCB area by packaging compatible components – a common configuration
being a large dedicated memory package atop a SoC package – that would
have otherwise been located separately. This allows device manufacturers to
maximise PCB density while shifting the responsibility of package development
to IC vendors. This provides greater flexibility by allowing the customisation of
packages without handling the acquisition, integration, testing and packaging of
dice; however, it relinquishes control over the package’s development.

FIGURE 2.2: Overview of Package-on-Package (PoP) assembly.

2.1.3 Microcontroller (MCU)

A microcontroller unit (MCU), or simply ‘microcontroller’, is a computing sys-
tem fabricated on a single IC. They are designed for applications with very
limited power and computational requirements, such as toys, implantable medi-
cal devices and simple remote environmental monitors. MCUs typically host a
single-purpose application and do not host a general-purpose OS. Its CPU may
be a simple 8-bit CPU, e.g. Microchip ATtiny10211, or a more complex 32-bit CPU,
like the ARM Cortex-M33. MCU CPUs usually feature lower clock frequencies
(usually under 100MHz), reduced instruction pipelines (2-3 stages), and smaller
instruction sets. MCU RAM and persistent flash memory is also significantly
restricted (typically less than 1MB). A limited number of I/O interfaces may also
be provided, e.g. UART and SPI, and a JTAG access port for debugging. During
active operation, some microcontrollers may draw as little as 1mA, or even <1µA
in a low-power state [42].

11Atmel ATtiny102: https://www.mouser.co.uk/new/microchip/
atmel-attiny-102-104-mcus/

https://www.mouser.co.uk/new/microchip/atmel-attiny-102-104-mcus/
https://www.mouser.co.uk/new/microchip/atmel-attiny-102-104-mcus/
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FIGURE 2.3: HiKey LeMaker single-board computer [45].

2.1.4 Single-Board Computer (SBC)

A single-board computer (SBC) is a complete computing system fabricated upon
a single PCB. SBCs, unlike MCUs and SoCs, typically include full physical con-
nectors – rather than simply interfaces – for video and audio outputs, e.g. HDMI,
VGA and 1/8-inch stereo line out; network connectivity, such as Ethernet ports;
storage inputs, e.g. SD card slots; and generic I/O connectors, e.g. General
Purpose I/O (GPIO), USB and SPI headers. SBCs typically comprise one or more
SoCs or even MCUs (sometimes referred to as single-board microcontrollers, like
the Arduino unit12). The Hikey LeMaker SBC, pictured in Figure 2.3, is driven by
a HiKey Kirin 620 SoC comprising an eight-core ARM Cortex-A53, 2GB (off-SoC)
DDR3 RAM, a Mali-450 MP4 GPU, and support for WiFi (802.11b/g/n) and Blue-
tooth LE. SBCs can be used to host general purpose OSs, such as Android, and are
used regularly for computationally intensive but space- and power-constrained
applications. Example applications include robotics, home entertainment, and
commercial unmanned aerial vehicle (UAV) platforms [43], [44].

2.1.5 Discussion

SiPs, SoCs and PoPs are primarily design and fabrication differences, each with
its own advantages and drawbacks with respect to acquisition, design and as-
sembly complexity. However, whether an MCU, SoC-based SBC, or traditional
computing architecture13 is chosen depends mostly on the intended device’s

12Arduino: https://www.arduino.cc/
13A traditional architecture is one whose components reside on separate PCBs that communicate

via expansion ports, e.g. SATA and PCI, over a primary PCB or motherboard.

https://www.arduino.cc/
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requirements. Ultimately, the wide variety of SoCs, MCUs, SBCs and SiPs means
that OEMs can tailor a system to a configuration that best suits its energy, compu-
tational, I/O and physical space requirements.

Mobile devices, such as tablets, smartphones and certain laptops, are usually
architected using high-end, microprocessor-based SoCs, like the aforementioned
HiSilicon Kirin 620 SoC, as used in the HiKey LeMaker SBC (Figure 2.3), Huawei
P8 Lite and Honor 4X and 4C smartphones. Modern smartphones often contain
multiple SoCs other than the primary application SoC – particularly sensor hub
and wireless communication SoCs – to which low-intensity background tasks
can be delegated without waking the main application SoC. The application SoC
can then remain in a low-power state in order to minimise power consumption
and prolong battery life. With respect to larger mobile devices, the HP Envy X214

laptop is powered by a Qualcomm Snapdragon 835 SoC. Notably, SoC-based
architectures tend to transition to traditional architectures at this point, i.e. lower-
to-mid range laptops. Devices intended for high-performance gaming and video
editing, for example, typically use discrete PCBs for GPUs, memory, audio, and
so on, in order to maximise computational performance.

2.2 Secure Execution Platforms

In this thesis, a secure execution platform is designed to offer strong assurances
regarding the preservation of the integrity, authenticity, availability and confiden-
tiality of its host applications. This includes any associated data, both persistently
and at run-time. Examples of such platforms include traditional smart cards,
Java Card and Secure Elements (SEs). The platform is built to resist significantly
greater security threats, including hardware- and software-based attacks.

The next section (Section 2.2.1) describes the Common Criteria for Information
Technology Security Evaluation (Common Criteria or CC, for short), which is
a widely-used computer security framework for evaluating and certifying the
security of secure and trusted execution platforms. This is introduced to discuss
and briefly compare the assurance levels to which platform is evaluated. The
subsequent sections present a review of widely-deployed, hardware-assisted
secure execution platforms in mobile and embedded systems. This includes
a brief examination of smart cards (Section 2.2.2); Secure Elements (SEs), e.g.
UICC and SIM Cards (Section 2.2.3); and Java Card (Section 2.2.4). Additionally,
Host-based Card Emulation is discussed in Section 2.2.5 for emulating smart
card-based services on mobile platforms.

14HP Envy X2: http://www8.hp.com/us/en/campaigns/envy-x2/overview.html

http://www8.hp.com/us/en/campaigns/envy-x2/overview.html
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2.2.1 Common Criteria

The Common Criteria for Information Technology Security Evaluation – com-
monly referred to as Common Criteria (CC) – is an international standard for
evaluating product security, which is formalised in ISO/IEC 15408 [46]. Ander-
son [47] defines security evaluation as “the process of assembling evidence that a
system meets, or fails to meet, a prescribed assurance target”. CC replaced individual
national schemes, such as the US Department of Defense’s Orange Book and
European Information Technology Security Evaluation Criteria (ITSEC), which
previously required vendors to ascertain multiple evaluation certificates based
on the intended deployment region. CC is used to convince procurers and other
stakeholders, such as government agencies, that a security product robustly
conforms to a recognised specification.

In CC, the product presented for evaluation by its vendor is known as the
Target of Evaluation (TOE). A Protection Profile (PP) is then chosen that stipulates
the security requirements of a class of systems; for example, CC PPs have been
developed by for TEEs (GlobalPlatform TEE PP [48]) and SEs (GlobalPlatform
SE PP [49]). CC PPs explicitly include list of threats, assumptions, organisational
policies, security objectives, rationales, security functional (SFR) and assurance
(SAR) requirements. A separate but closely-related Security Target (ST) is also
often defined that contains implementation-specific details of a TOE, which
claims conformance to one or more CC PPs. The vendor makes claims regarding
the ST’s attributes to those in the PP, and an independent testing laboratory
evaluates the TOE to assess the rigour of those claims.

The degree to which the TOE satisfies the assurances is graded using Evalu-
ation Assurance Levels (EALs), ranging from EAL1 for which basic functional
testing is required, up to EAL7 requiring a formally verified design. The ST speci-
fies the Evaluation Assurance Level (EAL) that the TOE ought to fulfil. The EALs
provide confidence that the TOE’s supposed security features are implemented
reliably. The CC EALs are described in greater detail in Table 2.1.

2.2.2 Smart Cards

A smart card is a lightweight, pocket-sized device containing an embedded inte-
grated circuit(s). They are securely packaged using a polymer, such as polyvinyl
chloride (PVC), and used to store sensitive personal credentials. Notable appli-
cation domains include physical access control systems, like security gates and
doors; financial transactions, e.g. credit and debit cards; public transportation
tickets and passes; and national identity card schemes, like those used in Belgium,
Estonia and Finland [51]. Contact-based smart cards use connective pads for
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TABLE 2.1: Common Criteria Evaluation Assurance Levels (EALs)
based on US-CERT definitions [50].

EAL Description

1 Functionally Tested: Confidence is required in the TOE’s correct operation
against non-serious threats; provides evidence that the TOE functions consistently
with its documentation and provides useful protection against identified threats.

2 Structurally Tested: Low-to-moderate security assurances, but the complete
development record is not readily available. This situation may arise when there is
limited developer access or when securing legacy systems.

3 Methodically Tested and Checked: Moderate assurances and a thorough inves-
tigation of the TOE and its development without substantial re-engineering.

4 Methodically Designed, Tested and Reviewed: Moderate-to-high assurances
in conventional commodity products; prepared to incur additional security-specific
engineering costs.

5 Semiformally Designed and Tested: High assurances in a planned develop-
ment environment; requires rigorous development approach that does not incur
unreasonable costs from specialist security engineering techniques.

6 Semiformally Verified Design and Tested: Applies to TOEs in high-risk
situations where the protected asset value(s) justifies the additional costs.

7 Formally Verified Design and Tested: Applies to TOEs in extremely high-risk
situations and where the high value of the assets justifies the higher costs.

electrical activation and data transmission. Contactless smart cards communi-
cate with a terminal occurs over a radio frequency interface, usually at a <10cm
distance. Contactless and contact-based smart cards are standardised in ISO/IEC
14443 [52] and 7816 [53] respectively. These standards define, among others, the
physical characteristics of cards, including dimensions and location of electrical
contacts; operational frequency (13.56 MHz); radio power; and initialisation,
transmission, anti-collision, application and data management protocols. Stan-
dards also exist specifying the operational requirements of smart cards within
particular domains, such as EMV15 for the technical details of payment cards and
terminals.

A typical smart card architecture comprises a 8-/16-/32-bit CPU (usually
with <35MHz clock); ROM for hosting a slimline OS and its applications (<32kB);
EEPROM for data storage (<24kB); RAM (<8kB) for temporary in-execution
storage; and a security co-processor for performing cryptographic operations, e.g.
3DES, AES and RSA [54]. High-security smart cards, such as credit and national
ID cards, are engineered to be tamper-resistant. This includes a co-processor
built to resist a range of hardware/physical security threats, such as simple and
differential power analysis (SPA/DPA), layered packaging that deters invasive
physical attacks without damaging the card, and a rigorously-tested OS. Smart

15EMV: Europay, Mastercard, Visa.
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cards are also manufactured and provisioned in a secure production environment.
Cards for high-security commercial applications, e.g. healthcare access control
cards, are typically evaluated to CC EAL4 [55].

2.2.3 Secure Elements (SEs)

A Secure Element (SE) is a tamper-resistant platform capable of securely host-
ing code and confidential data, such as cryptographic keys, according to the
processes established by its owner. SEs are currently available in three form
factors: the Universal Integrated Circuit Card (UICC), commonly found in the
SIM card format; the embedded SE (eSE), which is integrated into the NFC chip
or directly onto the device PCB; and an enhanced secure microSD card. All SE
forms accommodate a smart card microcontroller for storing sensitive credentials
and hosting a limited set of applications. The use of a microcontroller means SEs
typically have restricted memory and processing capacity relative to an SBC or
traditional computing system, as discussed in Section 2.1.3. SEs are often used
in conjunction with NFC for performing payment tokenisation for contactless
payments using multi-use tokens provisioned into the SE before deployment [56].
Another common application is the execution of fingerprint matching algorithms
and the storage of users’ biometric templates [57]. In general, SEs aim to defend
against threats similar to that of a smart card (Section 2.2.2), including advanced
side-channel analyses, e.g. power analysis, and fault injection [56]. GlobalPlat-
form has standardised SEs in the Financial [58], UICC [59], Card Common [60],
and Card Contactless [61] configuration specifications.

2.2.4 Java Card

Java Card [62] provides an interoperable secure platform for SEs, which al-
lows them to run multiple applications (applets) written in a subset of the Java
language. The fundamental components of a Java Card platform are: 1), a
Virtual Machine (VM) composed of a bytecode interpreter providing hardware-
independence and, from version 3.x, a mandatory embedded bytecode verifier.
2), a set of APIs that abstract the complexity of the underlying smart card com-
munications protocols, offer access to cryptographic functionalities, and secure
inter-applet data sharing. 3), a Java Card Runtime Environment (JCRE) with
additional security mechanisms, such as atomically updating persistent data.
And, lastly, 4), a firewall that maintains strong isolation between applets and the
system, and between applets from differing packages (see Figure 2.4).

The firewall enforces the security rules by restricting the rights of an applet to
applets from the same provider but in different packages, or in the same package
from different providers. Applets from the same package are in the same context.
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FIGURE 2.4: Java Card architecture.

An applet may only access objects owned by another applet in a different context
if they are explicitly tagged as ‘shared’ items. Notably, while Java Card may host
multiple applets, it is a single-threaded environment. The traditional ownership
model for Java Card is issuer-centric (ICOM), where only the Java Card issuer
can install applications. GlobalPlatform has standardised mechanisms through
which authorised third-parties can install applications via the use of Security
Domains (SDs), which are described later in Section 2.4.7.

2.2.5 Host-based Card Emulation (HCE)

Host-based Card Emulation (HCE), introduced in Android 4.4 (API 19), enables
NFC-enabled mobile devices to emulate contactless smart cards [63]. HCE’s
aim is to allow mobile devices to fulfil services with existing NFC-based card-
reader infrastructures, which would otherwise have been deployed using smart
cards, without using discrete SEs [56]. Prior to HCE, data sent and received to a
terminal was routed through an NFC controller connected directly to a SE aboard
the mobile device (Figure 2.5a). With HCE, the host OS handles the routing of the
messages, which may use a hardware-based SE or an application executing on the
host CPU. In Android, this is implemented as an application service that executes
as a long-running background task. This allows the user to place the device
against an NFC reader to execute transactions with the correct service in the
background, without manually launching a dedicated mobile application. In both
SE- and HCE-based deployments, data is routed to a particular application based
on its 16-byte Application ID (AID), as stipulated in ISO/IEC 7816-4 [53]. The
AIDs are registered with the mobile’s NFC controller, which maintains a routing
table of the AIDs belonging to which applications [63]. In NFC transactions,
the first Application Protocol Data Unit (APDU) is the SELECT command, also
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(A) SE-based (B) HCE-based

FIGURE 2.5: Card emulation using a SE (a) and HCE (b).

defined in ISO/IEC 7816-4 [53], containing the AID of the application with which
to process further NFC transaction messages.

The confusion lies in that, while HCE aims to supplant the role played by
hardware SEs and contactless cards, it does not provide the same degree of tamper-
resistance. In itself, HCE is a routing mechanism, while credential storage and
application execution may, at a minimum, be protected by the security mechanisms
afforded by the OS itself, such as application sandboxing, i.e. software-only.
This is opposed to SEs and contactless cards where application execution and
credential storage is conducted within a tamper-resistant platform. As such, it
is not recommended that critical transactions, like mobile payments and high-
security access control, are based solely on HCE [63]. A cloud-based SE is seen
as one solution whereby credentials are managed off the device and where the
HCE-enabled application acts a medium for acquiring dynamically-generated,
limited-use credentials from a remote server [64]. However, this has the drawback
of requiring network connectivity. Another solution is the Trusted Execution
Environment (TEE), described in Section 2.4, to host these credentials; we return
to mobile-based NFC transactions in conjunction with TEEs in greater detail in
Chapter 7.

2.3 Trusted Platform Module (TPM)

The Trusted Computing Group (TCG) defines trust as the “expectation that a device
will behave in a particular manner for a specific purpose” [65]. In highly constrained
environments, establishing trust may be achievable if devices are vetted off-line
beforehand; isolated from the outside world, e.g. air-gapped; and frequently
inspected thereafter. However, this is not typically the case in reality, and a
range of trusted computing technologies have been developed to provide remote
assurances that individual platforms are in a trusted state.
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The Trusted Platform Module (TPM) is one such technology – defined in
a suite of specifications developed by the TCG and standardised in ISO/IEC
11889 [66]. The TPM is a tamper-resistant processor intended to securely perform
cryptographic operations – key generation, a PRNG and various algorithms, e.g.
AES, SHA-2 and RSA – and providing evidence of the platform’s operating state.
Each TPM is provisioned with module-specific keys during manufacturing, which
are used in remote attestation and data sealing and binding. Remote attestation
(Section 2.3.2) is the mechanism through which the platform’s operating state is
measured, i.e. in terms of firmware and software components collected during
measured boot (Section 2.3.1), which are securely transmitted to a remote verifier
upon request. Notions of binding and sealing for secure storage are discussed
further in Section 2.3.3. The TPM is typically used as a Root of Trust (RoT): a
component that is inherently trusted and used for providing assurances that the
platform is behaving in the expected manner.

This section briefly describes these core abstractions provided by the TPM.
The reader is referred to ISO/IEC 11889 [66], Balfe et al. [67] and Sadegi [68] for
detailed technical descriptions of the TPM and its potential applications.

2.3.1 Measured Boot

Measured boot is used for measuring and storing the integrity state of criti-
cal system components at boot-time. This is performed using a set dedicated
160-bit Platform Configuration Registers (PCRs) contained within the TPM for
storing cryptographic hash measurements of these boot components. The TCG
TPM Profile Specification stipulates a minimum of one PCR bank containing 24
registers [69].

After a system reboot, executable code known as the Core Root of Trust for
Measurement (CRTM), which is stored in ROM, is used to initiate the component
measurement process that computes and extends the PCR values (usually per-
formed by the BIOS’s boot block). Each component is measured into a PCR by
extending its initial value using the TPM_Extend command that computes PCRi
= h(PCR′i||X). Here, i is the PCR index, PCR′i represents the old PCR value at
i; X is the data argument appended to the old PCR value; h is a cryptographic
one-way hash function, e.g. SHA-256; and || is the concatenation operation. Note
that the PCRs are zeroed initially upon boot.

A typical configuration is to use PCRs 0-1 for storing BIOS measurements
including the CRTM, 2-3 for any optional ROMs, 4-5 the master boot record
(MBR) and MBR configuration, 6-7 for state transitions and platform-specific
functionality, 8-15 the OS, and 16 onwards for any additional specific application
measurements; some PCRs may also remain unused [69]. The information and
execution flow for measured boot from an initial RoT is illustrated in Figure 2.6.
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FIGURE 2.6: Information and execution flow for measured boot.

The system’s integrity state is thus represented in the values extended through
the PCRs; if any component is compromised and modified or replaced mali-
ciously, then the measured hash at that PCR index will deviate from its expected
value. After boot, the Trusted Building Block (TBB) is established and the CRTM
proceeds with loading the primary OS. Importantly, measured boot does not
capture the state of every possible application present on the platform; if a partic-
ular application is not measured and extended into a PCR, then it may still be
compromised, even if the remaining PCR values are as expected.

2.3.2 Remote Attestation

Remote attestation (RA) is an interaction protocol between a prover, P , and veri-
fier, V , in which V ascertains the current state of a remote platform, i.e. P . The
goal of RA is assure V that P is operating with an expected platform configura-
tion, which is ascertained remotely using a secure channel over a network. The
TPM PCR values comprise the platform integrity measurements sent to a remote
verifier in order to evidence the system components loaded at boot-time. In
traditional attestation, the PCR values are packaged into a data structure known
as a quote report and signed by the TPM’s attestation identity key (AIK), which is
certified by the TPM vendor to assure its authenticity and integrity. The most re-
cent TCG TPM specification (version 2.0) stipulates the use of Direct Anonymous
Attestation (DAA). DAA tackles the privacy challenge that signing quotes with a
AIK unique to each TPM allows an adversary to monitor the activity of particular
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TPM. DAA solves this using group signature schemes, where one public-key may
be mapped to multiple private AIKs, which prevents an adversary from learning
the activity of a particular TPM from signed TPM quotes.

Numerous RA protocols have been proposed in the literature for use with
differing trusted technologies, e.g. TPMs or TEEs; adversarial models; privacy
requirements; and its integration with existing protocols, e.g. TLS and IPsec [70]–
[80]. The reader is referred to Abera et al. [70] for an IoT-centric review of remote
attestation mechanisms. Recent literature has tackled the challenge of using a
single remote attestation request to evaluate the state of multiple systems, such
as drone fleets [81]. The technicalities of RA are described later in greater detail
in Chapter 4.

2.3.3 Binding and Sealing for Secure Storage

Two other functionalities provided by the TPM are data binding and sealing, which
are used to realise secure storage from a master Storage Root Key (SRK) that is
generated when a user assumes ownership of the TPM. The SRK is a uniquely
generated key that never leaves the confines of the TPM.

The first abstraction, binding, is the process by which the TPM generates a
cryptographic binding key-pair, k, derived from its SRK, whose public component
is returned to the calling program. k may then be used to encrypt arbitrary binary
large objects (blobs) outside the TPM using the TSS_Bind command. (Auxiliary
functions used to support operations outside the TPM are defined in the TCG
Software Stack (TSS) specifications [82]). An associated authentication token, also
known as authdata – akin to a password [83] – can be specified in order to restrict
‘unbinding’ operations to applications with that token. Encrypted blobs may be
decrypted using the TPM_Unbind command, which, given a binding key, k, and
an encrypted object, decrypts it within the TPM using the private component of
k, which never leaves the TPM.

The second abstraction, sealing, is performed similarly, but with the crucial
distinction that the TPM encrypts data blobs such that they can only be decrypted
under the same PCR configuration. This prevents data being exposed to a
compromised system or if the encrypted blobs and keys are migrated to another
platform with different PCR values. Sealing and unsealing is performed using
the TPM commands TPM_Seal and TPM_Unseal respectively.

2.3.4 TCG TPM 1.2 and 2.0

The features and capabilities of the TCG TPM have been developed and revised,
resulting principally in the TPM 1.2 and 2.0 specifications. The main differences
centre around the flexibility in the available cryptographic algorithms and the
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initial key hierarchies. TPM 2.0 enables so-called ‘algorithm agility’ that allows
a greater variety of cryptographic algorithms to be used, rather than a single
asymmetric (RSA) and hashing algorithm (SHA-1) as per the TPM 1.2 specifica-
tion. TPM 2.0 modules support elliptic curve-based operations, e.g. ECDSA and
ECDH, including ECC-based DAA by Chen et al. [71] for remote attestation, as
well as SHA-256 for HMACs and general-purpose hashing, rather than SHA-1
alone.

Another difference is that TPM 1.2 contains a single key hierarchy rooted in
the storage root key (SRK) – a 2048-bit RSA key – while TPM 2.0 comprises storage,
platform and endorsement hierarchies. The TPM 1.2 SRK is generated randomly
and cannot leave the TPM. Child keys are encrypted (wrapped) by the SRK,
which may subsequently be used to wrap their own child keys. This hierarchy is
controlled by a single owner, or administrator. The TPM 2.0 hierarchies intend to
separate the use of keys from platform firmware that cannot distinguish whether
the TPM is enabled and initialised. It also aims to separate privacy-sensitive and
non-sensitive application key uses. The TPM 2.0’s storage hierarchy is analogous
to the TPM 1.2’s hierarchy, which is intended for use by the user. The platform
hierarchy allows the OEM to provision a list of trusted public keys in the TPM’s
NVRAM, which are used to verify system component signatures. Lastly, the
endorsement hierarchy is usually for wrapping keys used for signing remote
attestation quotes; each endorsement key (EK) is unique to the TPM, and the
TPM vendor provisions an accompanying certificate for authentication.

Other differences include the use of multiple algorithms per key hierarchy in
TPM 2.0 and the inclusion of a timer, clock and counters in NVRAM. The reader
is referred to [69] in which the revisions between TPM 1.2 and 2.0 are described
in greater detail.

2.4 Trusted Execution Environments (TEEs)

Trusted Execution Environments (TEEs) are platforms that operate alongside
standard mobile operating systems. TEEs provide two primary features: 1),
strong isolated execution of trusted applications – usually hardware-enforced
– both at run-time and at rest, and 2), secure storage of persistent data, such as
cryptographic keys. TEEs may also provide remote attestation for allowing re-
mote entities to verify its operating state, and a trusted path with I/O peripherals.
Broadly, TEEs address the shortcomings of previous technologies with greater
performance and integration with the underlying hardware. Standards-wise,
GlobalPlatform specifies a TEE system architecture [84]; a range of TEE APIs,
particularly the GP Internal and Client APIs [85], [86]; and a TEE protection
profile for Common Criteria compliance [48]. The GlobalPlatform TEE and its
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specification suite is discussed further in Section 2.4.7. A range of non-compliant
TEEs have been developed, however, particularly using the TPM as a root of
trust; a broad range of technologies are described in this section.

2.4.1 TPM-backed Virtualisation

Virtualisation is the process of creating virtual computing systems or resources,
such as a storage device or network. Virtual Machines (VMs) can imitate indepen-
dent computing platforms (guest machines) with potentially different OSs that
run upon the hardware of the host platform (host machine). VMs are instantiated
and managed by a hypervisor or Virtual Machine Manager (VMM). Hypervisors
are designed to provide strong isolation between guest machines to prevent
a compromised guest machine from easily influencing other guest machines.
Software-only virtualisation, such as Android application sandboxing, is used in
preventing inter-application compromises, as well as in commercial hypervisors,
such as Xen, for guest-to-guest and guest-to-host security in cloud computing.

In this section, several key technologies are explored that instantiate TEEs
using a TPM to launch a trusted hypervisor layer. These technologies make use
of a Dynamic Root of Trust for Measurement (DRTM) and the concept of ‘late
launch’. Here, secure boot is performed as usual in which hashes of critical boot
components, e.g. BIOS and MBR, are loaded into PCRs 1–16 (see Section 2.3.1).
Next, without requiring a reboot, the remaining PCRs (17–23) are reset to zero,
and then the code necessary to load the TEE is measured and stored into these
PCRs before it is executed. This assists in launching a trusted state without
rebooting the entire machine in order to remeasure the relevant components. In
this section, the major commercial and highly-cited academic technologies are
examined.

Intel Trusted eXecution Technology (TXT)

Intel Trusted eXecution Technology (TXT) [88], formerly known as LaGrande
technology, aims to defend computing platforms from generalised software at-
tacks, including firmware, BIOS and rootkit attack vectors. TXT constructs a chain
of trust using secure boot, which utilises the TPM as a root of trust. Late launch,
performed using the SKENTER Intel CPU, is subsequently used to measure the
state of the Intel TXT VMM launcher code. Any underlying system modifications
to the BIOS, MBR or VMM, such as by rootkits and other surreptitious software,
can be detected from deviations in the launch configuration from the TPM’s PCR
values. TXT interoperates with Intel’s Virtualisation Technology (Intel VT) [89],
which provides native hardware virtualisation extensions for providing high
degree of isolation while retaining performance. Facilities are also offered for
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FIGURE 2.7: Using Intel TXT for trusted hypervisor launch and
VM instantiation [87].

platform attestation in which a local or remote party is able to determine the trust
status of the launch configuration of the platform or VM, i.e. whether or not it was
instantiated correctly. A disadvantage of TXT is its significant hardware Trusted
Computing Based (TCB), comprising the TPM, CPU chipset, motherboard and
system buses. Figure 2.7 illustrates a high-level architecture for instantiating
trusted launch of VMs using TXT.

AMD Secure Virtual Machine (SVM)

AMD Secure Virtual Machine (SVM) is a TXT-like, DRTM-based environment for
AMD chipsets that launches a trusted hypervisor using a TPM 1.2 on the com-
puter’s motherboard. SVM provides a set of hardware extensions to maximise
the efficiency of world switches between the hypervisor and guest domains, and
allows the allocation of I/O device that can only be accessed by a particular guest
machine (but not others) [90]. Similar to Intel TXT, SVM provides support for at-
testation of the boot values measured with late-launch, which is performed using
the SKINT CPU instruction. SVM provides an additional security mechanism,
‘automatic memory clear’, which erases the system’s memory contents after a
reset to prevent an adversary from accessing secrets by simply reading memory
contents.
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Flicker & TrustVisor

McCune et al. [91] propose Flicker – a system architecture for protecting sensitive
code execution from an adversary that controls the BIOS, OS and DMA-enabled
devices. The aim of Flicker is to allow trusted execution of small arbitrary
applications. Like Intel TXT and SVM, Flicker uses late-launch but, rather than
launching a hypervisor, it pauses execution in order to run a small piece of
application logic known as a Flicker module containing security-sensitive code.
Flicker executes the remainder of the paused execution flow, i.e. in the untrusted
OS, after completing the execution of the Flicker module. Flicker modules are
linked with and managed by another entity, the Secure Loader Block (SLB),
for erasing secrets kept in memory, returning values through a bespoke Linux
kernel module, and triggering the resumption of the untrusted OS’s execution.
Flicker application code is extended into PCR 17 by the SLB Core, which has an
intentionally small TCB (0.312kB or 94 lines of code). This PCR value is included
in remote attestation quotes such that remote entities can be convinced of the
Flicker application’s operating state. Flicker is implemented and evaluated across
a range of applications, including rootkit detection (up to 1022ms overhead), SSH
password authentication (up to 937ms), and certificate signing (906ms).

TrustVisor is a second proposal by McCune et al. [92] that, like Flicker [91],
allows the execution of sensitive applications while retaining a small TCB. Its
primary difference is the use of an attestable, slimline hypervisor upon which sen-
sitive applications are executed, rather than attesting an individual application.
TrustVisor is, hence, similar to Intel TXT and AMD SVM, but purposely omits
scheduling and inter-process communication in order to minimise its software
TCB. TrustVisor is larger than Flicker in terms of its software TCB – <10k lines
of C and X86 Assembly, compared to Flicker’s <1k LOC – but yields greater
performance, with only 7% overhead versus unprotected code. TrustVisor, like
Flicker, is launched using a TPM using late-launch and attested similarly by
extending a PCR responsible for the hypervisor code. TrustVisor also exposes
individually virtualised ‘micro TPMs’ to each descendent application, in which
the keys of each virtualised TPM is derived from the host (hardware) TPM, thus
preventing applications from unsealing other applications’ sealed secrets. The
state of each application is measured upon launch into a single PCR held in
each micro TPM launched by TrustVisor. During remote attestation, these micro
TPM PCRs are aggregated into a single value alongside the TPM’s PCR values
collected at boot-time, rather than extending a virtually arbitrary number of
application states into the TPM’s PCRs.
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2.4.2 Microsoft Palladium

The Next-Generation Secure Computing Base (NGSCB), otherwise known as
Palladium or Trusted Windows, was an architectural proposal by Microsoft that
promised “users greater data security, personal privacy, and system integrity...[and]
enterprise customers significant new benefits for network security and content protec-
tion” [93]. Palladium, shown in Figure 2.8, separates execution into two abstract
worlds: ‘standard’ and ‘trusted’ worlds, in which the trusted world hosts a
bespoke security kernel, known as Nexus, containing a set of critical security
applications known as ‘agents’. The standard OS communicated with Nexus and
its agents using a Windows kernel module known as NexusManager.sys. A
proprietary TPM, referred to as the Security System Component (SSC), was em-
ployed for attestation, Nexus’ measured boot, and secure storage of application
data from the standard and trusted worlds.

Additionally, Palladium allowed Nexus to access main memory in order to
move data written from DMA-enabled peripherals into Nexus space for secure
I/O. Palladium also provided means to counter keyloggers, even with admin-
istrative privileges, by encrypting keystrokes at its USB controller under a key
shared with a Nexus agent for further processing, e.g. email. Nexus also had
read/write access to the video memory buffer of on-board graphics adapters in
order to neutralise screen-scrapers executing in the untrusted world [94].

A shortcoming of Palladium was its requirement for extensive modifications
to the CPU chipset and motherboard, particularly in light of competing pro-
posals at the time, namely Intel TXT [94]. Moreover, Palladium faced strong
criticism from privacy and free software activists, who expressed concerns over
its potential role in enforcing Digital Rights Management (DRM), vendor lock-in,
and commercial and even political censorship [95]. The Palladium project was
cancelled in 2005.

FIGURE 2.8: Overview of Microsoft Palladium in 2003 [96].
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2.4.3 Texas Instruments M-Shield

Texas Instruments developed an early inception of the TEE known as M-Shield.
M-Shield is a platform that resembles a SE with several additional hardware
modules for realising a trusted path, including over DMA, without any interme-
diary untrusted components, such as kernel drivers residing in an untrusted OS.
It features a hardware cryptographic processor and implements a secure state
machine (SSM) that monitors and enforces system security policies for preventing
unauthorised accesses to sensitive material. The SSM enforces peripheral and
memory accesses from the secure environment, including the management of
DMA channels that guarantee data confidentiality from peripherals to secure
memory regions [97]. M-Shield also provides one-time programmable ROM
modules for storing long-term key information, e.g. device-specific keys, acces-
sible only to the secure environment. Comprehensive details, however, remain
sparse in publicly-available documentation. Later iterations of M-Shield from
2006 integrated ARM TrustZone software and APIs. M-Shield underpinned the
security of the TI OMAP SoCs deployed on late-2000s/early-2010s smartphones
and tablets; however, production was ceased in 2013.

2.4.4 ARM TrustZone

ARM TrustZone is a collection of hardware IP blocks that enable the instantiation
of a TEE on ARM-based SoCs. Fundamentally, TrustZone establishes ‘secure’
and ‘non-secure’ worlds16 intended to host security-sensitive and non-sensitive
applications respectively. This is maintained through a separate NS register bit
that denotes the world in which execution is currently occurring. The NS bit
is propagated through the SoC’s bus transactions to memory, peripheral and
debug controllers for providing hardware-enforced access control to sensitive
memory regions, debug interfaces and I/O devices. As a result, each world may
only access the resources, namely memory resources and peripherals, associated
with it; non-secure applications may not arbitrarily access secure world RAM
and sensitive I/O peripherals unless configured to do so. This is illustrated at a
high-level in Figure 2.9.

The creation and maintenance of the worlds is handled primarily by the
processor and SoC bus components. On the processor, each physical core is asso-
ciated with two virtual cores for secure and non-secure execution that operate in
a time-sliced fashion. For Cortex-A CPUs, world context switches are mediated
by a secure monitor that enforces that the departing and arrival worlds are be-
ing correctly saved and restored. Monitor mode is entered, for software-based
switching, using Secure Monitor Call (smc) instructions, or by using a small set

16Also referred to as ‘trusted’ and ‘untrusted’ worlds.
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FIGURE 2.9: TrustZone separates trusted and untrusted system
components using the NS-bit [98].

of pre-configured hardware exceptions (see [99]). SMC instructions generate an
exception that takes the processor’s execution mode into Secure Monitor mode,
which is code that is part of ARM’s Trusted Firmware framework17 running at
a higher privilege level (EL3 in ARM nomenclature) and outside the untrusted
world’s context (operating at EL1). The monitor saves the current world’s pro-
cessor context, such as register banks, switches to the other world, and sets the
NS-bit accordingly if successful.

Further IP cores, such as the TrustZone Address Space (TZASC) and Trust-
Zone Protection Controllers (TZPC) are used in enforcing access control to secure
memory regions and I/O peripherals based on SoC bus transactions. TZASC is
used to program the partitioning of DRAM into secure and non-secure memory
address regions. Meanwhile, TZPC is used to assign protection bits to peripherals
to mark them as available to either the only the secure or both worlds, which
is used to prevent unauthorised accesses to protected peripherals from the un-
trusted world by the AXI-to-APB SoC bus bridge. Lastly, the TrustZone Memory
Adapter (TZMA) is used to protect sensitive static memory modules, like secure
SRAM and ROM, contained within the SoC.

To fully implement the TEE, additional software is necessary for securely boot-
ing the secure world, configuring the protection controllers, implementing the
secure monitor, a trusted OS, and trusted applications. TrustZone’s authenticated
boot sequence operates similarly to the TPM’s by measuring a chain of trusted
components from secure ROM. A TrustZone OS is also necessary to enable the
hosting of multiple applications, as well as associated APIs with the untrusted
world, which are standardised in the GlobalPlatform TEE specifications (Section
2.4.7). Derivative technologies have been developed that use TrustZone as a

17ARM Trusted Firmware: https://github.com/ARM-software/
arm-trusted-firmware

https://github.com/ARM-software/arm-trusted-firmware
https://github.com/ARM-software/arm-trusted-firmware
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root of trust (RoT) on other processor architectures, as well as providing addi-
tional features, such as remote attestation, which are not provided natively by
TrustZone. An example TrustZone-based SoC is illustrated in Figure 2.10.

FIGURE 2.10: Example ARM-based SoC with TrustZone, showing
non-secure and security-aware IP blocks [100].

TrustZone for ARMv8-M (TrustZone-M)

The previous discussion pertains to ARM TrustZone as originally realised for
Cortex-A application processors using the ARMv8-A architecture (TZ-A). Trust-
Zone technology has also been extended to the ARM Cortex-M processor family,
marketed for use in embedded microcontroller units. Here, TrustZone for ARMv8-
M [101], or TrustZone-M (TZ-M), shares the same high-level security features as
TZ-A in dividing execution and physical memory into secure and non-secure
worlds; however, they feature significant differences in how it is realised.

For world switching, as stated previously, TZ-A uses enters secure world
functions via secure monitor code in EL3 that mediates the final world switch;
that is, the secure monitor is the sole access point for performing world transitions.
In comparison, TZ-M uses a memory map-based approach, where secure and
non-secure regions are defined in a programmable or fixed fashion using the
Secure Attribution Unit (SAU) and Implementation Defined Attribution Unit
(IDAU) aboard the Cortex-M [101]. World context switches occur automatically
without the need for an secure monitor exception handler as program execution
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flows from non-secure to secure regions and vice-versa. To prevent unauthorised
secure world accesses, transitions from non-secure memory must first follow a
Secure Gateway (sg) instruction held in Non-Secure Callable (NSC) memory – a
separate region initialised by the SAU or IDAU containing ‘secure gate veneers’
that point to valid entry points that secure world code can be branched into [102].
Attempting to access secure memory without a preceding sg instruction triggers
an exception handled in the secure world. Unlike TZ-A, TZ-M shares all general
purpose registers except the stack pointer (sp) registers during world switches
to further minimise switching latency and energy consumption [101]. These
differences accumulate to a reduction from “thousands” to a “few” processor
cycles when comparing TZ-A to TZ-M for performing world switches [102].

AMD Secure Processor

AMD Secure Processor, formerly AMD PSP, is a technology for AMD chipsets
for executing sensitive software in a TEE. AMD Secure Processor uses an ARM-
based SoC packaged into the AMD chipset that uses TrustZone for establishing
secure and untrusted worlds for realising secure application execution [103].
Besides marketing material [103] and technical presentation slides [104], few
published details exist regarding the actual functionality and capability of AMD
Secure Processor. However, it is known to contain a Trustonic TEE kernel, and
is used to implement a TEE-based TPM and host DRM, payment and identity
applications from trusted third-party providers on commercially-available AMD
chipsets [104].

Samsung KNOX

Samsung KNOX is a mobile-based security platform built upon a TrustZone
TEE. The secure boot process of the untrusted and trusted worlds is enhanced to
set a KNOX Warranty Bit in one-type programmable ROM if boot component
measurements deviate from their expected values. This terminates the KNOX
platform indefinitely, which is persists across device reboots and resets [105],
[106]. KNOX also offers remote attestation using a device-specific root key for
signing attestation quotes [105]. KNOX is underpinned by a Trustonic TEE,
which uses ARM TrustZone, on all flagship Samsung handsets, e.g. Galaxy S6–
S9 smartphones [107]. However, few publicly-available technical details exist,
particularly regarding the secure boot process and attestation protocol.
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FIGURE 2.11: ObC system architecture [109]).

2.4.5 Nokia On-board Credentials (ObC)

On-board Credentials (ObC) was a project developed at Nokia Research Center
between 2005–2013 for securely storing and using credentials intended for mobile-
centric services, e.g. payments and transport. It was intended to address the
challenge of protecting wholly software-based credentials stored in a standard
OS environment without incurring the expense and inflexibility of hardware-
bound credentials [108]. Fundamentally, in its most recent form, ObC used
ARM TrustZone, which hosted a VM, the ObC interpreter, for providing isolated
execution of ObC programs from untrusted developers within the TEE.

Each ObC device contains a unique root seal key, the ObC Platform Key
(OPK), accessible only to the TEE. This is used to derive subsequent, per-ObC
program keys for sealing data to the device filesystem.Each ObC-enabled device is
deployed with a certified key-pair by the manufacturer, accessible only to the TEE,
which is used for device authentication in the provisioning of credentials from
their issuers. This key-pair is also used to sign remote attestation quote responses.
Each ObC program has access to a TEE-based cryptographic library and a secure
source of randomness provided by the underlying hardware implementation.
ObC also contains a corresponding set of REE applications for networking with
external entities, namely credential issuers. ObC was deployed on all Nokia
Symbian Belle and Windows Phone 8 devices [108]. ObC’s system architecture
is illustrated in Figure 2.11; the reader is referred to work by Kostiainen [109]
(esp. Chapter 4 of [109]) and Ekberg [110] (esp. Section 9.1 of [110]) for detailed
analyses regarding ObC.
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2.4.6 Intel Software Guard eXtensions (SGX)

Intel Software Guard eXtensions (SGX) is an extension to the X86-64 instruction
set architecture (ISA) that enables the creation and management of ‘enclaves’
in which sensitive code and data is hosted and executed. In general, Intel SGX
aims to protect primarily against software-based adversaries originating from
any protection mode, e.g. untrusted user- (ring 3) and kernel-mode (ring 0)
applications. At run-time, enclave code and data is protect by a hardware TCB
including only the Intel CPU. This is achieved predominantly by allocating a
DRAM region known as Processor Reserved Memory (PRM) containing the
Enclave Page Cache (EPC) that holds four-kilobyte pages for enclave code and
data. The CPU protects enclave pages in PRM from non-enclave and DMA
memory accesses from external devices. An additional region, the Enclave Page
Cache Metadata (EPCM), is used to store meta-data regarding the mapping
of EPC pages to enclave identities. Enclave pages are encrypted outside the
CPU using a proprietary Intel Memory Encryption Engine (MEE) to prevent
divulging secrets stored in DRAM using certain hardware-based attacks, namely
bus probing and cold-boot attacks. During execution, enclaves are still subject to
conventional OS techniques like context switching and exceptions, e.g. interrupts.

When launching an SGX-enabled application, the Intel SGX run-time module
requests the CPU to load SGX data from untrusted memory into EPC pages. This
is performed using dedicated CPU instructions: ECREATE for creating a new
Secure Enclave Control Structure (SECS) that stores the enclave meta-data; EADD
to load code and data to new enclave pages; and EEXTEND for incrementally
constructing the enclave measurement hash in 256-byte chunks. The initial
application state is considered untrustworthy; it is urged that no secrets are
statically stored (hard-coded) within the enclave code [111]. After the enclave
code and data is loaded, the EINIT instruction is used to finalise the enclave
measurement SHA-256 hash constructed through the EEXTEND instructions (also
known as the MRENCLAVE value).

Enclave developers, or Independent Software Vendors (ISVs), must provide
a certificate that includes the enclave’s identity represented by a SHA-256 of its
code, data and meta-data, such as author name and version number, which is
produced during the build procedure (known as the MRENCLAVE value). This
value is used when sealing data – akin to TPM sealing – such that only an
enclave with the same MRENCLAVE value can unseal that data when the enclave is
relaunched. Another identity, the signing identity or MRSIGNER, is the authority
who signs the enclave prior to distribution. Either MRSIGNER or MRENCLAVE
may be used when sealing data persistently, either to allow data to be (un-)sealed
between enclaves with the same developer identity, or restricted only to a single
enclave respectively.
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FIGURE 2.12: Intel SGX key infrastructure [72].

Each SGX-enabled CPU supports two 128-bit keys stored in ROM: the root
provisioning (RPK) and sealing key (RSK). Each RPK is created off-site at a Intel
Key Generation Facility and retained for assuring that the chipset is a genuine
Intel SGX CPU. The RSK is created randomly at manufacture-time and used for
secure storage using the sealing abstraction. Intel SGX uses a set of specialist
enclaves for accessing ROM-resident keys: the provisioning enclave (PE) and
a quoting enclave (QE) used for remote attestation. All keys, except the RPK,
require the RSK for derivation, which renders them unknown to Intel. The Intel
SGX key infrastructure is shown in Figure 2.12.

SGX supports remote attestation based on the Enhanced Privacy ID (EPID)
protocol – a DAA-based group signature scheme with revocation support. It
allows the SGX enclave to demonstrate to a remote authority that it is utilising
an authentic Intel SGX CPU. When SGX software is deployed, the PE is used
to contact the Intel EPID Provisioning Server that ‘joins’ the CPU to the EPID
group from its RPK. A separate EPID attestation key is then transmitted to the PE,
which is used by the QE to sign quotes of the measured value of the target enclave
during the remote attestation process. The EPID protocol allows a secure channel
to be bootstrapped after the target enclave has been attested successfully. This is
the intended method to provision secrets – keys, passwords and other credentials
– into enclaves, rather than hard-coded secrets. The high-level attestation process
is shown in Figure 2.13 and described message-by-message below.
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FIGURE 2.13: Intel SGX remote attestation process [112].

In (1), the host application receives an attestation request from the remote
service that its enclave must produce an attestation quote (2). Next, a procedure
known as local attestation occurs between the quoting enclave (QE) – a special
enclave that is launched specifically for with access to the EPID attestation key –
and the enclave to be attested. Here, the target enclave requests a local attestation
report from the QE in which the CPU computes an AES128-CMAC tag on the
MRENCLAVE value using the enclave’s report key (using EREPORT), which is
verified and then replaced by a signature by the QE using the EPID attestation
key. This produces the final quote that is returned to the host application (5)
which, in turn, returns it to the challenger in (6). Lastly, the remote entity verifies
the quote using the Intel Attestation Authority (see Figure 2.12), which possesses
public portions of the provisioned EPID keys.

2.4.7 GlobalPlatform TEE

The GlobalPlatform (GP) TEE is a series of specifications for trusted execution
environments, including TEE networking (GP TEE Sockets API); system archi-
tecture (GP System Architecture API); the Internal API for TEE applications, e.g.
for cryptographic operations; debugging APIs; the Client API, for communica-
tion with applications in the untrusted world; and interoperability with secure
elements [48], [49], [84]–[86], [113], [114]. The GP TEE divides execution into
two distinct ‘worlds’: the untrusted world, comprising a standard OS, such as
Windows or Linux, and the trusted world containing a TEE OS and one or more
Trusted Applications (TAs).

TAs interact with the TEE OS using the GP Internal API, while untrusted
client applications in the REE communicate with the TEE using the GP Client
API, which transmits messages to the TEE kernel over a hardware-assisted secure
monitor. The kernel, in turn, routes the messages to the target TA. The TEE kernel
and TAs are considered trusted; it follows that any errors in the TA code, e.g. the
API function definitions it exposes to client applications, or the TEE kernel could
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FIGURE 2.14: GlobalPlatform TEE system architecture overview.

potentially compromise the TEE. The high-level architecture of the GP TEE is
shown in Figure 2.14.

Hardware-wise, a GP TEE should have access to a secure clock, volatile and
non-volatile memory, cryptographic accelerators and peripherals if applicable;
the GP TEE should be able to utilise access resources without trusting the REE.
The GlobalPlatform Internal API contains many of the primary abstractions
described in previous sections, including sealing – similar to TPMs and Intel SGX –
in which TAs can seal secrets to a TEE-specific key, and a host of general-purpose
cryptographic primitives, such as AES, RSA, and elliptic curve cryptography.
Notably, the GP TEE does not specify protocols for performing remote attestation.

It is important to note that the GP TEE is only a series of interface specifica-
tions; it does not contain details, for example, regarding the implementation of the
REE and TEE partitioning. Generally speaking, ARM TrustZone (Section 2.4.4) is
the predominant technology for instantiating a GP TEE on mobile and embedded
systems. GlobalPlatform-compliant TEEs include OP-TEE18, an open-source TEE
developed by Linaro, and commercial closed-source solutions like Qualcomm’s
QSEE19 and Trustonic’s Kinibi20 – all of which utilise TrustZone in practice.

The management of the GlobalPlatform TEE is defined in the TEE Man-
agement Framework [115] (TMF) specifications. The GP TEE utilises Security
Domains (SDs) as the abstraction with which to manage TAs between multiple

18OP-TEE: https://www.op-tee.org/
19Qualcomm QSEE: https://www.qualcomm.com/snapdragon/security
20Trustonic Kinibi: https://www.trustonic.com/solutions/

https://www.op-tee.org/
https://www.qualcomm.com/snapdragon/security
https://www.trustonic.com/solutions/
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provisioning authorities. SDs are abstract isolated regions that manage a set of
descendent TAs, which have no administrative capability themselves, using the
GP Client API. Initially, a root SD (rSD) is provisioned by a trusted master author-
ity, e.g. OEM, which is used to install and manage descendent SDs in a tree-based
structure; these SDs may then install subsequent TAs themselves. It is possible
for a TEE to contain multiple rSDs – belonging to the OEM, mobile operator and
government authority, for example – each comprising independent SD trees. A
comprehensive set of management functions, including the installation, deletion
and locking of TAs in order to prevent further updates and the configuration and
personalisation of SDs, are found in the GP TMF specification [115].

The following section gives special attention is given to the GP TEE’s pro-
tection profile and deployment model (as assumed in the CC PP), as it forms
the security basis of the systems, protocols and architectures proposed in the
forthcoming chapters of this thesis.

Protection Profile

The GlobalPlatform Protection Profile [48] is designed for a target of evaluation
(TOE) based on the GP TEE. The TOE must implement the GP System Architec-
ture, Internal and Client APIs; it comprises any hardware, firmware and software
used to provide the TEE security functionality and secure usage of the TEE after
delivery. The GP TEE PP does not consider the REE or any individual client or
trusted applications. At present, the minimum assurance level for compliance is
CC EAL2.

The profile is split into TEE Base, which covers any GP TEE, and the Time
and Rollback modules that are implemented separately. The TEE Time and
Rollback modules address the requirement for monotonic TA persistent time,
integrity verification of TA code, configuration and trusted persistent storage.
The TOE may require additional, non-TOE hardware to operate, such as other
flash memory storage units, but the TOE must not rely on the correct behaviour
of such units. The profile lists a series of assets aboard the TEE and the security
properties that should be upheld; Table 2.2 lists these assets and their security
requirements, aggregated from the TEE Base, Time, Rollback and Debug modules.
The current version “targets threats to the TEE assets that arise during the end-usage
phase and can be achieved by software means...focuses on non destructive software attacks
that can be easily widespread...and constitute a privileged vector for getting undue access
to TEE assets without damaging the device itself” [48]. This may, for example, include
threats that attempt to recover keys for accessing corporate data or enforcing
DRM video playback, which is implemented by a TA in the TEE. It does not
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protect against poorly-designed TAs containing improper use of cryptographic
algorithms and TA programming errors in general.

TABLE 2.2: Security requirements of GP TEE assets.

Asset
Property

C I AU U UP AT DB M CO IM

TEE Identifier 3 3

RNG 3

TA Code 3 3

TA Data and Keys 3 3 3 3 3 3

TA Instance Time 3

TA Run-time Data 3 3 3

TA Persistent Data 3 3 3 3 3

TEE Firmware 3 3

TEE Init. Code and Data 3

TEE Storage RoT 3 3

TA Persistent Time 3

Rollback Detection Data 3

TEE Debug Auth. Key 3 3

C: Confidentiality, I: Integrity, AU: Authenticity, U: Uniqueness, UP: Unpredictability,
AT: Atomicity, DB: Device Binding, M: Monotonicity, CO: Consistency, IM: Immutability.

The reader is referred to [48] for a full list of all the security and organisational
controls, delivery and deployment assumptions and requirements. Importantly,
the PP defines two untrusted world adversaries that any GP TEE must protect
against:

• Basic remote attacker: “Performs the attack on a remotely-controlled device or
alternatively makes a downloadable tool that is very convenient to end-users. The
attacker retrieves details of the vulnerability identified in the identification phase
and [...] makes a remote tool or malware and uses techniques such as phishing to
have it downloaded and executed by a victim” [48].

• Basic (on-)device attacker: “Has physical access to the target device; it is the
end-user or someone on his behalf. The attacker is able to retrieve exploit code,
guidelines written on the internet on how to perform the attack, and downloads and
uses tools to jailbreak/root/reflash the device in order to get privileged access to the
REE allowing the execution of the exploit. The attacker may be a layman or have
some level of expertise but the attacks do not require any specific equipment” [48].

Additionally, the the GP TEE Exploitation Profile (Appendix A.2 of [48])
covers four capability levels of these adversaries (in increasing order):
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1. Remote – an adversary without physical access who uses malware or
phishing through which to conduct an attack on the TEE.

2. Local layman – a low capability adversary with physical access, who may
jailbreak/root/reflash the device, and use standard equipment available
through the Internet with information from an Internet resource, e.g. tuto-
rial.

3. Local proficient attacker – same as (2) but with greater expertise and more
time; assumes the use of standard equipment, such as oscilloscope, voltage
supply and low-end visible light microscope.

4. Local proficient attacker with equipment – same as (3), but possesses spe-
cialist equipment, including chemical etching tools, UV-light microscopes,
laser apparatus and micro-probe workstations.

Specifically, the GP TEE addresses 14 threats, which are described in Table 2.3.
The current GP TEE CC requires resistance to attackers with TEE-Low attack
potential. This is deduced from the Attack Quotation Grid using the sum of the
adversary capability, elapsed time, and any organisational controls, including
those that inhibit access to the TOE TEE’s designs (VHDL/Verilog SoC designs)
and source code, like requiring non-disclosure agreements (detailed further in
Annex A.1 in [48]). While the security threats in Table 2.3 imply protection against
hardware/physical attack vector, the TOE must only satisfy the TEE-Low criteria,
which, in practice, does not address threat actors with significant expertise and
bespoke equipment. Comparatively, the Eurosmart Security IC PP stipulates
conformance to EAL4+ with protections against expert adversaries possessing
specialist tools found in ‘solid -state physics research and IC failure analysis’. As such,
while a TEE may protect against expert adversaries with bespoke equipment
(reaching the security rating of TEE-High or beyond), the PP states that this “is
often beyond reach” of most TEEs, nor is it it necessary for CC certification.

Deployment Model

GlobalPlatform provides a reference deployment model comprising six stages,
which are listed as follows:

1. The TEE hardware designer is responsible for designing the IP cores for
processors and other components used for hosting TEE software, main-
taining inter-world hardware-enforced separation, and other hardware
security resources used by the TEE, e.g. secure clocks and cryptographic
co-processors.
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2. The TEE software developer develops the TEE’s software resources, including
the TEE kernel and procurement of TAs. It also develops code used in
initialising and instantiating the TEE, such as secure boot code, and any req-
uisite drivers for interfacing with I/O peripherals in the trusted world. The
TEE software developer is responsible for testing TEE software correctness
and its compliance with the GlobalPlatform specifications.

3. The silicon vendor is responsible for producing the TEE chipset that inte-
grates the hardware and software components from the previous steps. The
silicon vendor may assume the role of hardware and software designer, or
procure them externally. It produces the secure ROM code used as the root
of trust, and incorporates any additional hardware, such as wireless (e.g.
Ethernet and 802.11 WiFi), I/O (e.g. GPIO and SPI) and GPU support, into
the final chipset.

4. Device manufacturing is the production of the final product into its housing,
including installing the previously developed chipset from the silicon ven-
dor. Here, the REE software, root security domain(s), and any additional
TAs are provisioned.

5. End-usage involves any final quality assurance steps before delivering the
product to the client, and the process of aftercare is prepared. This includes
the use of a Trusted Service Manager (TSM), which may be incorporated
into the device manufacturer or outsourced, for managing the TEE through-
out its lifecycle. This includes remotely performing updates, factory resets,
and uninstalling and installing TAs.

2.5 Feature Comparison

This section provides a comparison of all the above technologies using two
generic types of adversary based on the level of access to a particular device.
These are drawn from the aforementioned GlobalPlatform adversaries.

2.5.1 On-Device Adversary

On-device adversaries are malicious users that can potentially compromise the
device. By doing so, depending upon the depth of compromise, they can control
the execution of any sensitive applications and kernel space services. We divide
the capabilities of this adversary further into three general categories:

1. User-mode Adversary: An adversary that develops a malicious application
and has it installed on the target device or compromises an application
currently executing in user-mode (Ring 3).
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2. Kernel-mode Adversary: An adversary that comprises the kernel space (Ring
0) of a device through a vulnerability discovered in the OS and/or kernel,
or another application currently executing with root-level privileges. The
adversary is assumed to have itself gained root-level access over the system.

3. Hardware Adversary: An informed adversary with the ability to perform
hardware-based shack attacks, such as bus probing, cold-boot and power
analysis attacks using commercially-available equipment.

2.5.2 Off-Device Adversary

Off-device adversaries are malicious users that are located remotely and aim to
manipulate the target’s communication interfaces. The objective is to exfiltrate
stored data or introduce malicious code to provide control the device to the
remote adversary. This includes a standard Dolev-Yao adversary with the ability
to intercept, read, modify and replay protocol messages across a network (e.g.
during remote attestation), and with access to API specifications used for remotely
managing the technology.

2.5.3 Criteria

In this section, the evaluation comparison criteria is introduced regarding the
aforementioned secure and trusted execution technologies (STETs). These are
described as follows:

1. User Control: The user may freely (un-)install arbitrary applications that use
the chosen STET.

2. Centralised Control: The STET requires total or some co-operation with its
issuer or maintainer, i.e. a centralised authority other than the end-user, in
order to fully utilise it securely.

3. Open Access: Developers are freely able to access and utilise the STET’s
features in their own applications.

4. Static Verification: The STET has the ability to provide static integrity verifi-
cation of the device platform and applications running on it.

5. Continuous Verification: The STET has the ability to monitor run-time states
to provide continuous integrity verification and/or access control between
applications.

6. Tamper-Resistant Hardware: The STET is packaged in tamper-resistant hard-
ware.
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7. Secure Storage (Internal): The STET contains internal secure storage for
protecting data/applications, which never leaves the STET.

8. Secure Storage (External): The STET has access to external secure storage for
protecting data/applications. This also includes encrypted data/applica-
tions stored on external storage, where the storage medium itself may be
insecure.

9. Isolated Execution: The STET allows applications to be hosted and execution
in complete isolation, at run-time and persistently, without interference
from the untrusted device OS(s) and its applications.

10. Software/Hardware Binding: Individual applications and their data aboard
the device are securely bound to the underlying hardware; applications
and associated data cannot be easily transferred between platforms.

11. Remote Attestation: The trust technology can provide evidence to assure
remote verifiers that it is functioning to expectations, including its platform
and applications.

12. Trusted Path: The technology provides a trusted path such that I/O pe-
ripherals can communicate data to that technology without relying on the
co-operation of untrusted entities, e.g. untrusted OS drivers.

13. Protection Against On-Device Adversary 1: The STET can protect against user-
mode adversaries from an untrusted element, as described in the previous
section.

14. On-Device Adversary 2: The STET defends against a kernel-mode adversary
from an untrusted element.

15. On-Device Adversary 3: The STET defends against an informed adversary
with the capability of performing hardware-based ‘shack attacks’ with
commercially-available tools.

16. Off-Device Adversary: The STET defends against the off-device adversary
described in the previous section.

Table 2.4 illustrates the degree to which each of the previous secure and
trusted execution technologies compares against the above criteria. AMD Secure
Processor and Samsung KNOX are ommitted from the comparison due to a
lack of publicly-available information for a reliable analysis. The comparison
also aggregates TPM-backed hypervisors – Intel TXT, AMD SVM, Flicker and
TrustVisor – because of their shared security features, namely remote attestation,
TPM-assisted secure storage and similar adversary protection. The differences in
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these technologies are largely functional in terms of performance and the target
architecture.

2.6 Discussion

In this chapter, a range of hardware-assisted security technologies were in-
troduced for establishing platform trust, focussing principally on embedded
and mobile platforms. One immediate observation is that no single technol-
ogy satisfies all security criteria. Some technologies, such as Intel SGX and the
GP TEE, provide strong security guarantees of isolated application execution
against kernel-level adversaries. However, these forgo robust resistance against
hardware-based attacks, particularly in the case of Intel SGX, while the GP TEE
is significantly implementation-dependent. Comparatively, technologies built to
resist strong hardware-based adversaries – Secure Elements and Java Card, as
used for payments, access control for health care, and national ID schemes – forgo
the flexibility of other technologies. This includes limited internal storage (and,
indeed, general computing processing performance) and requiring stringent
co-operation with the technology’s vendors for acquiring access.

A further observation is the fragmentation of the TEE landscape. SEs, Java
Card and TPMs have converged towards a set of widely understood, imple-
mented and maintained specifications, developed by GlobalPlatform, Oracle
and TCG respectively. In comparison, TEEs primarily remain a disparate set of
technologies and, while most share a set of similar features, such as secure storage
and isolated execution, they are predominantly incompatible across platform
architectures. Despite standardisation efforts by GlobalPlatform (Section 2.4.7),
some widely-deployed technologies, such as Intel SGX, do not conform.

Beyond security, the requirement for additional hardware and auxiliary soft-
ware, e.g. for drivers and communication protocols, is a disincentive to a manu-
facturer looking to create secure platforms without significantly increasing the
size of the device’s physical PCB and hardware and software TCBs. STETs in-
tegrated into the platform’s SoC or chipset are desirable from an architectural
perspective for embedded systems. At present, the GP TEE upon ARM Trust-
Zone is a highly attractive solution with respect to deployability, availability,
performance and security features offered. This notably includes trusted I/O and
protection against the strongest of software-based adversaries. However, the ab-
sence of a standardised remote attestation mechanism is still a major shortcoming,
as is the lack of current open-access implementations at the time of writing.

Lastly, attention is drawn to the shortcomings of the adversaries listed in
Sections 2.5.1 and 2.5.2. In particular, we do not consider attacks requiring
significant access to expertise, specialist non-commercial equipment, time and
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capital, confined typically to state-level and similar actors. Related attacks also
include the influencing of the supply chain and the ability to perform insider
attackers upon the technology itself.

Furthermore, we are also aware of the emerging class of threats involv-
ing microarchitectural attacks, such as Spectre [120], Meltdown [121] and Fore-
shadow [122] that exploit the side-effects of optimisation techniques used by
modern CPUs, namely speculative and out-of-order (OoO) execution. Briefly,
Spectre [120] exploits a side-effect of speculative execution, where the CPU
performs certain tasks in advance, e.g. branch prediction, in parallel without
knowing for certain whether the results will be used by the program under execu-
tion. The authors demonstrate how a victim program’s execution can be induced
to speculatively execute sequences that should not have occurred under correct
program execution in order to leak unauthorised information from the victim
program’s memory address space using a cache covert channel. Meltdown [121],
meanwhile, exploits OoO on certain processor models to leak kernel memory
from user space; OoO is an execution technique in which subsequent program
instructions are executed in parallel with the preceding instructions in order to
maximise CPU utilisation. At a high level, Meltdown exploits a race condition
where unauthorised memory accesses are available to OoO before the processor
issues a fault and reverts speculatively executed operations, which can be leaked
via a cache covert channel. Foreshadow, presented by Van Bulck et al. [122],
exploits a speculative execution bug that enables the execution of an extended
Meltdown attack to recover Intel SGX enclave secrets, including the keys of SGX’s
quoting enclave (see Section 2.4.6). After extraction, the keys can then be used to
forge local and remote attestation responses. While Foreshadow was remedied by
Intel in August 2018 [123], we note that, due to their recent emergence, the reader
is urged to be mindful of the continually evolving landscape of microarchitectural
attacks on STETs.

The coming chapters will introduce, propose and evaluate solutions for a
number of existing domain challenges where TEEs could benefit constrained
sensing platforms. It will be examined how the application of TEEs can enhance
the security and trust assurances of such platforms while retaining performance
and deployability.
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Chapter 3

Towards Trusted Execution of
Multi-Modal Continuous
Authentication Schemes

3.1 Introduction

The emergence of powerful, sensor-rich devices has prompted the development
of continuous authentication (CA) schemes on commodity hardware, where user
behaviour is compared to past experience to produce an authentication decision.
CA schemes aim to address many of the existing challenges with traditional
authentication schemes, such as tokens and conventional biometrics (elaborated
upon in Section 3.2.1). Current proposals, however, have largely neglected
system-level adversaries and offer little in the way of assurances to a remote
authority that CA decisions can be trusted. This has particular importance if a
third-party controls access to assets based on CA decisions from a potentially
compromised device. This could be, for example, an employee’s phone whose
decisions are used to control access to assets belonging to their employer based
on a CA-based authentication decision. A software compromise, either on the
platform or scheme implementation, may enable an adversary to modify authen-
tication scores to gain unauthorised access to restricted assets, conduct a Denial
of Service (DoS) by denying legitimate accesses, or potentially gain insights into
user behavioural patterns. This could be, for instance, if the host application
contains a vulnerability in which the CA scheme resides. Worse, this could be
by exploiting an OS-level vulnerability through malicious software (malware)
delivered, say, in a phishing email.

In this chapter, we investigate the use of secure and trusted execution technolo-
gies to preserve the security and trust of CA schemes, even when an adversary
has root-level privileges, while retaining deployability. After an analysis of these
technologies, we present the first forays into evaluating TEE-based CA, which
is implemented on a Intel-based laptop and ARM-based development board
using Intel SGX and the GlobalPlatform TEE respectively. Our proposal provides
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additional confidentiality, integrity and trust assurances over existing untrusted
world implementations. A comparative performance evaluation is presented of
Intel SGX and GlobalPlatform TEE versus non-TEE performance using a test-bed
of algorithms proposed in related work. The results indicate that trusted CA
can be performed in an efficient fashion while reducing the TCB relative to an
untrusted world implementation.

3.1.1 Motivation

Modern mobile devices are often used to store sensitive user data, such as contact,
financial, corporate email and social media information. The physical nature of
mobile devices, however, introduces a range of attack vectors typically avoided
with desktop workstations. Small form-factor devices can be misplaced, dropped
or stolen, such as in restaurants and on public transport. Despite this, previous
studies by Harbach et al. [124] and Micallef et al. [125] indicate that in the region
of 25% of smartphone users do not use a secret-based locking mechanism, such
as a PIN or fingerprint, depending on demographic. Moreover, Hayashi et
al. [126] show that the all-or-nothing nature of mobile authentication, where
access to all device functionality is granted/denied upon the completion/failure
of a secret, is a “remarkably poor fit” with users’ preferences. Instead, users
prefer explicitly unlocking a device for only certain applications – those holding
sensitive data, such as banking – while avoiding explicit authentication for benign
ones, like navigation. Similarly, in separate work, Hayashi et al. [127] showed that
users favour setting different authentication challenges in locations of varying
perceived safety; that is, reducing the strength or frequency of authentication
challenges in perceived safe locations, like the home, while maximising strength
in previously unvisited areas.

These factors have inspired the exploration of continuous authentication1,
where the device’s authentication state is influenced by environmental and con-
textual data. This includes measurements from mobile sensors, such as ambient
light, temperature, humidity and GPS location, as well as application usage,
nearby Bluetooth MAC addresses and WiFi access points (APs). However, while
numerous schemes have been proposed in the literature, little attention has been
paid towards secure and trustworthy on-device execution of CA schemes in
practice. If any element is modified – the sensor data, underlying user model
or the decision itself – access could be granted to sensitive assets and services
maliciously.

1Also known as ‘implicit’, ‘on-going’ and ‘transparent’ authentication in related literature.
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3.1.2 Contributions and Chapter Structure

For the first time, we explore Secure Elements (SEs) and Trusted Execution
Environments (TEEs) in order to provide stronger confidentiality, integrity and
trust assurances regarding the execution of CA schemes. After introducing CA
and examining recently proposed schemes (Section 3.2), the potential applicability
of SEs and TEEs in addressing our extended threat model is discussed in Section
3.3. Next, the implementation of test-beds for evaluating TEE-based CA using
Intel SGX and the GlobalPlatform TEE with ARM TrustZone is described in
Section 3.4. The test-beds are evaluated with a selection of machine learning
algorithms proposed in past literature using a publicly-available dataset from
real-world users (Section 3.5). Finally, the conclusions of our results are discussed,
as well as identifying potential avenues for future research (Sections 3.6). This
chapter provides the following contributions:

• The design and implementation of a test-bed for performing trusted ex-
ecution of multi-modal CA using Intel SGX and the GlobalPlatform TEE
with ARM TrustZone. To our knowledge, this is the first investigation into
assessing TEE-based CA.

• An analysis of TEEs and SEs for executing continuous authentication
schemes, along with their associated benefits and drawbacks relating to
security, performance and deployability. This also includes a high-level
threat analysis relevant to CA schemes generally.

• Performance results regarding two implementations of TEE-based CA.
The results show that TEE-based CA can be conducted with a projected
maximum overhead of 404ms (training) and 2.0ms (testing), versus an
implementation executing in the untrusted world.

The work presented in this chapter is an extended version of work from the
following publication:

• C. Shepherd, R. N. Akram, and K. Markantonakis. “Towards Trusted Exe-
cution of Multi-Modal Continuous Authentication Schemes,” in Proceedings
of the 32nd ACM Symposium on Applied Computing, ser. ACM SAC ’17, ACM,
2017, pp. 1444-1451.

3.2 Related Work

This section presents a more detailed examination of CA and its motivations
(Section 3.2.1), and trusted biometric schemes in recent literature (Section 3.2.2).
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3.2.1 Continuous Authentication (CA)

User authentication relies upon what one knows, e.g. passcodes and PINs; has, e.g.
tokens and smart cards; or is, e.g. behavioural and physical biometrics. Password
and pattern schemes, however, suffer from well-studied issues relating to memo-
rability and shoulder-surfing attacks [128]. Token-based methods are generally
seen to be more secure, but are liable to theft and considered burdensome when
managing multiple credentials across numerous providers [129]. Biometrics com-
prise physiological and behavioural measures, and recent work [126] shows that
users are receptive to these due to their convenience. However, physiological
systems such as fingerprint recognition, suffer from inherent reliability issues
from ageing, injury and the environment [129]. Physiological biometrics also
have inherent difficulties with ‘revoking’ or ‘replacing’ physical characteristics
once divulged. With behavioural biometrics, like gait authentication, achieving
acceptable error rates remains an open problem [129]. CA aims to address the
shortcomings of traditional schemes by transparently monitoring the user’s envi-
ronment and context via device sensors. Various schemes have been proposed
that rely upon keystroke- [130], motion- [131], environmental- [132] and touch-
based [133] features. Recent research – discussed in the following subsection –
has tended to focus upon a multi-modal approach, where multiple data sources
are used to authenticate users in order to reduce error rates. Generally, CA aims
to address one or more of the following:

• Reducing the number of unnecessary login attempts through modulating
the lock-screen strength [127], [134].

• A primary or second line of defence for detecting unauthorised users who
have bypassed the initial lock-screen, e.g. via shoulder-surfing [135]–[137].

• Adjusting access control policies based on context [138].

A typical approach involves training a supervised learning classifier using
labelled sensor data, and classifying subsequent data according to these labels.
Classes may correspond to locations, such as ‘safe’ and ‘unsafe’ locations as per
[138], or the accept/reject status directly [134], [136], [137], [139]–[142]. Other
work does not focus on classifying data, but produces a probability value that is
subsequently thresholded at rates decided by the operator [135], [143].

CA schemes usually follow two phases (Figure 3.1):

1. Enrollment/training: sensor data is collected over a period ofN days, often
with user prompts to ascertain labelled data, and training a classifier to
model user behaviour with respect to those labels.
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FIGURE 3.1: High-level state flow of CA Schemes.

2. Authentication/testing: occurs after the model is generated. Sensor data
is collected over a time window – hours, minutes, or per sample – that is
inputted to the classifier to produce the corresponding class indicating the
authentication state.

In both stages, data is collected at predetermined intervals of M samples at a
rate of T milliseconds. Data is classified directly or after a feature extraction stage,
as described in Section 3.3.1. A classification model may be retrained after certain
intervals; that is, transitioning periodically between the authentication and en-
rollment stages in order to address gradual natural shifts in user behaviour [127],
[136], [143]. We summarise the key attributes of related schemes developed for
mobile platforms in Table 3.1. Many existing proposals use modalities beyond
the capabilities of modern mobile platforms, such as ECG, body temperature
and perspiration measurements from wearable monitors [146]–[148]. Rather, this
work concentrates on modalities collected from a single conventional mobile
device.

3.2.2 Secure and Trusted Execution of Biometrics

Trusted execution of biometrics is a well-understood domain. This section briefly
examines measures on consumer devices and those proposed in academic lit-
erature for securing the confidentiality, integrity and availability of biometric
measurements and templates.

Consumer Devices

At present, fingerprint authentication is the most widely-deployed biometric au-
thentication mechanism on consumer mobile devices [129]. Critically, fingerprint
matching algorithms must be executed securely such that the user’s fingerprint
images enrolled onto the device – also known as templates – cannot easily be read
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TABLE 3.1: Multi-modal CA schemes in related work.

Proposal Method(s) Modalities

Hayashi et al. [127] NB GPS†

Micallef et al. [125] DT
Acc., WiFi, Light,

Sound, Mag.

Shi et al. [137] NB
GPS, Cell ID, Acc.,

Sound, Touch

Miettenen et al. [138] RF, kNN, NB GPS, WiFi

Riva et al. [134] SVM
Light, Temp., Hum.,

BT, Touch, Logins

Li et al. [136] SVM Touch, Acc., Ori., Mag.

Verlinde & Chollet [144] kNN, LR, NN, DT Sound, Face + Profile Images

Bo et al. [145] SVM Touch, Acc., Ori, Gyro.

Saevanee et al. [139] NN
GPS, Text Messages,

WS, Keystrokes

Ketabdar et al. [140] NN Acc., Sound

Wang et al. [142] SVM, RF
Touch Size, Pressure,

Swipe Dynamics

Fridman et al. [141] NB, SVM Keystrokes, CC, WS
†Only GPS evaluated, but the scheme is generalisable to N inputs.
* Acc.: Accelerometer; BT: Bluetooth; DT: Decision Tree; Hum.: Humidity; Gyro.: Gy-
roscope; Mag.: Magnetometer; NB: Naive Bayes; LR: Logistic Regression; NN: Neural
Network; Ori.: Orientation; RF: Random Forest; SVM: Support Vector Machine; Temp.:
Temperature; CC.: Cursor Coordinates; WS.: Writing Style (Stylometry).

by untrusted system elements, including the host OS. The lack of a revocation
and replacement mechanism for physical biometrics, as alluded to in Section 3.2.1,
means the disclosure of a fingerprint could affect a multitude of other services
used by the same user.

Towards addressing this on consumer devices, the Android architecture is
designed to allow only the vendor’s TEE OS to access fingerprint hardware
directly. Its architecture, shown in Figure 3.2, is intended to prevent arbitrary ac-
cesses to raw fingerprint images from any part of the untrusted world, including
user-installed applications and kernel-mode services. The Android SDK [149]
describes the following components:

• The FingerprintManager API is exposed to Android application de-
velopers for conducting fingerprint authentication. The API (version 23)
exposes only three public functions: 1), authenticate() initiates the
fingerprint reader, displays a system dialog box indicating the reader’s acti-
vation, and triggers a callback if the authentication attempt fails or succeeds;
2), hasEnrolledFingerprints() returns a boolean value for whether
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FIGURE 3.2: Fingerprint authentication system architecture for
Android platforms [149].

the user has any enrolled fingerprints; and 3), isHardwareDetected()
returns whether fingerprint hardware is present and functional. Each
application contains an instance of FingerprintManager, which com-
municates with FingerprintService.

• FingerprintService is a singleton service that operates in a system
process and handles communication with fingerprintd.

• fingerprintd is a C/C++ implementation of the binder interface from
FingerprintService. The fingerprintd daemon executes in its own
process for communicating with the Fingerprint Hardware Abstraction
Layer (HAL) that abstracts vendor-specific code.

• The Keystore API and Keymaster are key management services for
storing, managing and protecting keys in the device’s TEE.

Android stipulates that “raw images and processed fingerprint features must not
be passed in untrusted memory. All such biometric data needs to be secured within
sensor hardware or trusted memory” and that, notably, “Rooting2 must not compromise

2‘Rooting’ is the process by which a user gains administrative (superuser) access permissions in
a UNIX-type environment. For Android, this allows users to modify existing system applications
and preferences, and execute third-party applications with root-level privileges whose functionality
would otherwise be sandboxed by its uid and gid. On Apple iOS platforms, ‘jailbreaking’ is
the process of exploiting a known privilege escalation vulnerability to break out of chroot ‘jail’
that restricts application access to parts of the filesystem, namely reads/writes to the device’s OS
partition and execution of the data partition. This is used to acquire root access, which is further
utilised to disable signature verification checks in iOS that enforce the installation and launching
of only Apple-signed system components and applications. This subsequently allows the user to
install unauthorised, unsigned system components and applications on the device.
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biometric data” [149]. The aforementioned FingerprintManager API exposes a
binary authentication result to application developers, i.e. success or failure. Raw
fingerprint data is not accessible from outside the TEE; indeed, the fingerprint’s
SPI interface “must be accessible only to the TEE”, and that fingerprint image
acquisition, enrollment and matching must also occur within the TEE [149].
Additionally, only encrypted forms of the fingerprint data can be stored on the
(untrusted) file system, and that “templates must be signed with a private, device-
specific key” using AES such that encrypted templates cannot be transferred to
another device and reused [149].

On Apple platforms, fingerprint authentication is performed using a pro-
prietary security processor – isolated from the primary application processor
– known as a ‘Secure Enclave’ from the Apple A7 SoC used in Apple iPhone
models from Q3 2013 [150]. Few publicly-available details exist regarding the
Secure Enclave3, but the Apple iOS Security documentation [150] states that it
hosts a microkernel capable of performing fingerprint and facial authentication,
payment tokenisation, and managing a keystore of application-generated keys. It
also states that “data saved to the file system by the Secure Enclave is encrypted with a
key entangled with the UID4.” More generally, NXP, STMicroelectronics and Infi-
neon produce embedded Secure Elements (eSEs) marketed towards fingerprint
authentication; the state-of-the-art Infineon SLE97 eSE5 offers a 32-bit CPU at
300MHz with 32 kB RAM and 1MB flash storage; hardware-accelerated AES,
3DES, RSA and ECC; and is certified to CC EAL5+.

Academic Literature

While the trustworthy execution of CA has not been addressed in the literature to
the best of our knowledge, work has been conducted in protecting sensor values
and securely and privately computing authentication decisions remotely. The
latter is based principally on the application of garbled circuits and homomor-
phic encryption. A review of related work and their respective contributions is
provided below.

Liu et al. [151] propose an architecture offering confidential, integral and
trusted sensor values using Credo – a TPM-backed hypervisor for Intel TXT –
for x86 platforms, and ARM TrustZone. In this work, a trusted GPS sensor is
implemented that signs resulting measurements within the TEE over a trusted

3The absence of publicly-available documentation has precluded a detailed security discussion
regarding the capabilities of Apple’s Secure Enclave in this thesis.

4The Unique ID (UID) is a device-specific value that is generated by the Secure Enclave on first
launch and unknown to Apple Inc.

5Infineon SLE97 eSE: https://www.infineon.com/cms/en/product/
security-smart-card-solutions/security-controllers/sle-97/

https://www.infineon.com/cms/en/product/security-smart-card-solutions/security-controllers/sle-97/
https://www.infineon.com/cms/en/product/security-smart-card-solutions/security-controllers/sle-97/
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path, and provides sealing of values – protecting a given secret by binding it to a
policy based on sensor readings – and remote attestation.

Safa et al. [152] propose a scheme for computing authentication decisions
remotely from encrypted feature vectors using homomorphic encryption. Here,
an encrypted behavioural model is stored on a remote server and a decision
is computed from incoming feature vectors (also encrypted) without revealing
either to a potentially intrusive server. Authentication is performed by computing
the dissimilarity between incoming features and the stored user profile; the user
is authenticated if the dissimilarity is within an acceptable threshold set by the
remote server. A security proof is provided; however, the scheme is neither
implemented nor evaluated. This method of cloud-based authentication also
requires constant online connectivity between the device and remote server; the
authors also note that the scheme does not cover scenarios in which the user’s
device is compromised, which we aim to tackle in this work.

Domingo-Ferrer et al. [153] develop the work by Safa et al. [152] and present
an approach based on the set intersection of homomorphically encrypted feature
vectors to authenticate users. The work operates similar to [152], but adds set
intersection to compute the dissimilarity function between the encrypted user
profile and incoming feature vectors to support categorical as well as numerical
features ([152], meanwhile, supports only numerical features). The authors
provide a performance evaluation of the proposal in which authentication takes
0.08–31.2 seconds depending on the number of input features (1–50 input features
respectively). Like [152], however, constant internet connectivity is required and
on-device adversaries are also not considered.

Sedenka et al. [154] propose protocols for secure outsourcing of biometrics
using garbled circuits and homomorphic encryption, which enables remote
computation of decisions under the honest-but-curious server model. A security
analysis is provided and the schemes are evaluated using a consumer laptop and
smartphone. The results suggest that outsourcing is possible, but not without a
communication and time penalty, ranging from 4–174MB and 0.85s–45.9s based
on the submitted data size. As with [152] and [153], our primary concern is
security issues relating to on-device execution, rather than outsourcing computation
to a remote party.

3.2.3 Discussion

The question of executing a CA scheme in a secure and trustworthy fashion, on the
device itself, has not been addressed directly in related work. While attention
has duly been given to scheme accuracy and outsourcing decisions in a secure
and privacy-preserving way, it has yet to be directed to the extended threats
faced ‘in the wild’ from on-device system adversaries. This may be, for example,
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through the exploitation of a vulnerable mobile application in which the CA
scheme resides, and also OS-level adversaries, whether as a result of a malicious
application with root access (e.g. on an already-rooted device), or the exploitation
of an OS-level vulnerability. The threat model is described further in Section
3.3.2.

Because of such threats, we note that a CA scheme operator, such as a corpo-
ration altering access to remote resources based on context, is unlikely to trust
authentication decisions produced from users’ devices for high-value assets. The
information stored and used by such a scheme during execution may provide
privacy-intrusive insights into users’ behavioural patterns that are represented
by a history of GPS coordinates, ambient sound, current application usage, and
other measurements used by a particular CA scheme. Secure and trusted CA
is, hence, necessary to protect against such adversaries, while remaining mind-
ful of deployment costs. Additionally, the high volume of sensor data and the
maintenance of a behavioural model provide unique challenges over traditional
biometric schemes like fingerprints (discussed further in Section 3.3.3).

3.3 CA Security Analysis

Next, we introduce the high-level components of a generic CA scheme in order
to ground the subsequent discussion on the threat model and attack surfaces
that we consider. After this, TEEs and SEs are explored as potential candidates
towards addressing these threats.

3.3.1 High-level CA Components

The high-level procedure for acquiring raw measurements collected from sensing
hardware, constructing and managing a CA behavioural model, and generating
the authentication decision can be modelled in six stages:

1. Sensor data acquisition: Raw measurements are acquired from the rele-
vant sensor I/O devices. This may include a vector of real values from
a tri-axial accelerometer (representing x-, y- and z-axis values in three-
dimensional space), latitude and longitude GPS co-ordinates, key presses,
two-dimensional cursor co-ordinates, or even a waveform of desired length
recorded from a microphone. The sampling rate at which data is polled
from sensing hardware is scheme-dependent.

2. Feature extraction: Raw measurements are transformed into more mean-
ingful or efficient representations for more effective classification. This may
comprise standard dimensionality reduction algorithms, such as principal
component analysis (PCA); noise reduction; normalisation; or computing
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simple statistical metrics, such as the arithmetic mean or standard deviation
of sensor measurements.

3. Classification: In past work, authentication is often modelled as a binary
classification problem, i.e. ‘authenticated’ and ‘not authenticated’ [136],
[137], [139]–[141], [143]–[145]. During the enrollment phase (see Figure 3.1),
the classifier is trained from features collected after a period of monitoring
the user’s regular behaviour, which serve as the authenticated examples,
while unauthenticated examples are sourced from artificially perturbed
values or data samples sourced from other users.

4. User Model: During enrollment, the saved classifier parameters act as
the behavioural model. This may include, for example, learned network
weights and node activation values for a neural network, or feature weights
for logistic regression. In the authentication phase, the parameters are
restored from file and used to classify future segments of sensor data.

5. Decision/post-processing: During the authentication stage, a segment of
sensor data, e.g. using a sliding window of a given time-frame, is used as
input to the classifier that outputs the corresponding authentication state.

6. Update device status: The classifier label may be transmitted to a remote
authority over a secure channel or returned to a security monitor that
modifies the system state to reflect the authentication state.

3.3.2 Threat Model

In general, current CA schemes aim generally to protect against the following:
a) a primary or second-line of defence against a device thief who bypasses the
initial lock-screen through shoulder-surfing, successful guessing, or where no
mechanism is present, with the aim of accessing sensitive data; and b) a curious
adversary, e.g. a co-worker or friend, who accesses the device to browse private
data. In our work, the threat model is expanded to incorporate adversaries
present in a practical deployment, and we specifically consider software threats
that aim to influence or subvert the operation of the scheme on the device.

An on-device CA scheme and its constituent components – described in Sec-
tion 3.3.1 – would typically execute as a part of a user-mode application (ring 3)
or the host operating system (ring 0). We aim to address a strong adversary oper-
ating at either of these protection levels; that is, at worst, a root-level adversary
with extensive control over the OS, including the CA code itself and run-time
and persistent states accessible to the OS. The threats under consideration are
now summarised:
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• Observing run-time states, such as memory contents, including raw sensor
data polled from hardware, the extracted features, classification decisions,
and the user model under execution.

• Observing data structures contained within the device’s persistent storage,
such as the trained user model stored at rest on the device’s filesystem.

• Modifying sensor measurements after they are polled from hardware, the
extracted features, classification decisions, and the user model both at rest
and under execution.

• Disrupting or modifiying the intended CA scheme execution flow; for
example, bypassing feature extraction in order to give rise to denial of
service conditions.

In the above cases, the intentions of the attacker include learning the be-
haviour of the device user, thus violating user privacy, and generating inaccurate
authentication states in order to access restricted device assets or deny legitimate
accesses to the device. To be clear, we do not consider physical attacks on the
sensing hardware itself to be in scope; for example, replacing sensors with ones
that output adversely inaccurate measurements, or removing them completely to
give rise to denial of service conditions. Moreover, defending against contextual
adversaries that engineer the surrounding environmental conditions to influence
classification decisions (see Shretha et al. [155]) is also beyond the scope of this
work. However, we do place trust in the security assurances provided by a TEE
or SE, which were discussed in greater detail in Chapter 2. Related to this, we
consider threats outside the remit of TEEs and SEs to be out-of-scope in this
work; for example, developer-induced TEE and SE programming errors, supply
chain attacks and, for TEEs, the use of fault injections and other related attacks
requiring significant expertise, as discussed in Sections 2.5.1 and 2.6 of Chapter
2. The reader is also referred back to Section 2.4.7 and [48] for a description of
protection scope of the GlobalPlatform TEE specifically; Section 2.4.6 and, in
particular, Costan and Devadas [118] for Intel SGX; and Section 2.2.3 for SEs.

3.3.3 TEEs and SEs as Secure CA Candidates

As per Chapter 2, secure execution is the ability to maintain confidentiality and
integrity of run-time states during code execution, while trusted execution typ-
ically includes extensions for attesting to the state of executed code. SEs and
TEEs are two high-level constructs for preserving the security of CA schemes
at run-time, which would be implemented as a trusted application (TA) and
provisioned into the TEE or SE before deployment. This section contrasts these
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two candidates in order to protect the sensitive assets of a CA scheme – authenti-
cation decisions, feature extraction, user model and sensor data – and the code
under execution. The focus on these standardised constructs minimises potential
deployment overhead commercially.

The principle behind separating a CA scheme from the Rich OS is to minimise
the Trusted Computing Base (TCB) – the set of hardware, software and firmware
components critical to maintaining the security of a system. Conventional OSs,
such as Windows and Android, are generally too large in size to formally verify
their security properties; TEEs and SEs, meanwhile, are significantly smaller and
more suitable for such analysis [156]. By relocating CA schemes to a TEE or SE,
the TCB is reduced largely to that of the TEE/SE and the CA scheme’s application
logic, thus reducing the attack surface significantly. A TEE or SE could be used
to address the threat model by protecting the code under execution, including
run-time states, and protecting the internal behavioural model from untrusted
world adversaries. Using a TEE, the behaviour model can be protected by using
its secure storage after use, i.e. at power-down, to encrypt it on the untrusted
world filesystem using a TEE-resident storage key, and subsequently restoring
it on relaunch, e.g. upon booting the device. A TEE could also be used to host
key material for signing authentication decisions, using ECDSA or RSA, before
transmission to a remote authority.

The potential performance benefits of TEEs, i.e. its hardware sharing with a
REE, make it attractive in pursuit of our design goals, namely for computationally-
intensive applications like those requiring machine learning. Our initial investiga-
tions using the GCU dataset [143] found that, on average, sensor data surpassed
0.5MB per day per user – far exceeding the memory capacity of many commer-
cial embedded SEs at the time of writing when over 3 days of data is used, as
suggested in related work [127], [135], [136], [157], [158]. This could be a deciding
factor when considering that other data, such as payment and transportation
credentials and applications, must reside simultaneously on one SE.

TEEs are also supported directly by underlying device CPU/SoC, RAM and
storage, thus offering greater speed and capacity over SEs. Moreover, many TEEs,
such as Intel SGX, also offer native remote attestation, where third-parties may
attest to the integrity of the enclave application. This property allows remote
services reliant on authentication decisions to verify the state of the platform
(post-boot) or applications themselves. As stated in Chapter 2, a TEE’s precise
TCB depends primarily on the chosen platform, but for widespread TEEs, such as
TrustZone and SGX, the hardware TCB generally comprises a trusted CPU chipset
or SoC. The software TCB of a TEE comprises the trusted world containing a
trusted OS, firmware and applications (for GlobalPlatform and TrustZone), or
enclave logic for SGX [118].
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TABLE 3.2: Summary of CA-relevant features.

Feature REE SE TEE

Isolated Execution 7 3 3

Processing Performance Best Poor Good+

Memory Capacity Great Limited Great+

HW Tamper-Resistance 7 3 †
Remote Attestation 7 7 ♦

Secure I/O 7 3 3^
Hardware TCB All SE MCU CPU/SoC*
Software TCB Large Smallest Small

♦ TEE-dependent. † Limited protection.
* Applicable for TrustZone and SGX. ^ Applicable for TrustZone.
+ Applicable for SGX and TrustZone-A. We note that TrustZone-M,
marketed for microcontrollers, is significantly more limited.

FIGURE 3.3: Example CA attack vectors; this chapter proposes
using a TEE to protect those areas in red.

While SEs are significantly less powerful than TEEs, their primary benefit
is strong hardware tamper-resistance, thus making it an attractive solution for
key and other small-sized auxiliary data storage. Note that TEEs and SEs are
not mutually exclusive; it is possible for a TEE to rely upon an SE, or indeed a
TPM, for certain operations such as cryptographic operations and key storage,
as noted in GlobalPlatform guidelines [48]. We summarise the key properties of
each architecture in Table 3.2, and compare this to a regular application running
in user-mode in the Rich OS (implicit in existing proposals).

3.4 Test-bed Implementations

In light of the above discussion, we describe our test-bed implementations for
evaluating TEE-based CA. Our system uses the Intel SGX and OP-TEE along
with implementations of three learning algorithms for performing trusted CA on
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ARM and Intel chipsets. We present the details and challenges of implementing
this on two commercially-available devices.

3.4.1 Intel SGX

Intel SGX was described previously in greater detail in Section 2.4.6 of Chapter
2. The first thing we note is that Intel SGX supports only a subset of C/C++ li-
braries. We discovered, for example, that libraries found ubiquitously elsewhere,
e.g. <locale>, <sstream> and <iostream>, were either partially or wholly
unavailable. This is because, in present versions, SGX enclaves cannot use meth-
ods reliant upon OS systems calls. Consequently, basic functions reliant on I/O,
such as printf, had to be redefined – printing from enclaves requires a context
switch to the Rich OS through an OCALL, where a system call is used to redirect
characters to standard output. Intra-enclave thread creation is also unsupported,
along with the rand and srand PRNGs, thus forcing calls to the CPU’s hardware
RNG via the SGX-only function sgx_read_rand. Originally, we planned to
use a popular C++ machine learning library, such as Shark6, that offered im-
plementations of a variety of learning algorithms. Such libraries, however, rely
heavily upon system calls and I/O functions, meaning bespoke, SGX-compatible
algorithms had to be re-developed for use within enclaves. For complex learning
algorithms, like SVMs and Random Forests, redesigning and reimplementing
libraries with large code bases is difficult while retaining correctness without
expert oversight. Indeed, popular SVM libraries have non-trivial code bases
(>5,000 lines of code for LibSVM7). This issue was less problematic for kNN, LR
and NB – all relatively simpler in nature – which were favoured in the test-bed
implementation. These algorithms are described briefly in the following section.

3.4.2 Machine Learning Algorithms

In machine learning, classification is a supervised learning task in which a func-
tion, f , which maps input features to output labels, is inferred/‘trained’ using a
set of example input-output (feature-label) pairs. This example set is also known
as the training set: T = {(F (1), C(1)), (F (2), C(2)), . . . , (F (n), C(n))}. A feature
vector, F = (x1, x2, . . . , xm), comprises a vector of real-values, where m is the
number of observed features, while C ∈ {1, . . . , c} represents the corresponding
label or class (c = 2 for binary classification, e.g. authentication). Numerous clas-
sification algorithms exist in order to model f using various techniques, such as
Bayesian probability, finding the closest members in feature space, or minimising
a cost function of a linear function that maps feature vectors to their labels (linear

6Shark Machine Learning: http//image.diku.dk/shark/
7LibSVM: https://www.csie.ntu.edu.tw/~cjlin/libsvm/

http//image.diku.dk/shark/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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optimisation). The process of systematically classifying new feature vectors after
training is known as ‘testing’. We describe the algorithms explored in this work
below.

Naïve Bayes (NB) is a widely-used probabilistic classifier that uses Bayes’
Theorem with a strong independence assumption between features. Given a
labelled training set, T, the training phase involves computing the label priors
(the probabilities of each label occurring in the set, i.e. p(Ck)), and feature
conditional probabilities (the probabilities of features occurring given the label,
i.e. each p(xi|Ck)). A feature vector is subsequently classified by maximising the
posterior probability for each class label Ck, given in Equation 3.1. While strong
independence between features may seem intuitively unwise, Naïve Bayes has
been applied successfully in wider literature and, indeed, in CA successfully [127],
[137], [138], [141].

Cnew = arg max
k∈{1,...,c}

p(Ck)

m∏
i=1

p(xi|Ck) (3.1)

k-Nearest Neighbour (kNN) classifies a feature vector, F , using the k closest
neighbours to F in feature space (F ∈ Rm). That is, given a pre-existing training
set, T, kNN measures the distance (typically Euclidean distance) between Fnew
and each F (i) ∈ T. Fnew assumes the label of the nearest k neighbours in T using
majority vote. kNN has no dedicated training period, other than storing feature
vectors with which to reference future examples.

Logistic Regression (LR) is a binary classification method in which the prob-
ability of the occurrence of a positive example is found by computing the logit
function (Equation 3.2) over a weighted sum of the feature vector. That is, the
probability of the label, c = 1, given an example feature vector F is found by
computing the logit function, g, on the sum of weights multiplied by each fea-
ture xi ∈ F .This is denoted in Equation 3.3, where wi is the weight of the ith

feature. The set of weights is found by minimising the ordinary least-squares
cost function of the training examples and labels using gradient descent [159].
An open-source C++ implementation8 of logistic regression was adapted for the
test-bed implementations.

g(z) =
1

1 + e−z
(3.2)

p(c = 1|F ) = g
( m∑
i=0

(wixi)
)

(3.3)

8‘A Simple LR Implementation in C++’: https://github.com/liyanghua/
logistic-regression-in-c--

https://github.com/liyanghua/logistic-regression-in-c--
https://github.com/liyanghua/logistic-regression-in-c--
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The test-beds implement TEE-compatible versions of the above algorithms
and a simple API is exposed through which application developers can train
and test data in the TEE from the Rich OS. All functions use purely ECALLs
for SGX; no CA-specific data is divulged to the Rich OS other than: 1), a value
indicating successful training, and 2), the authentication decision. The test-
bed spawns a enclave that hosts each algorithm, which was implemented in
C++ using Microsoft Visual Studio and the Intel SGX SDK, and compiled using
the Intel compiler provided. The Intel SGX SDK allows the development of
applications that instantiate enclaves natively. We implement the training and
testing phases inside the enclave environment, which are managed through
a restricted API from the host application. Only two context switches occur
between SGX and the Rich OS: 1), to transfer raw sensor data from the Rich OS
to the TEE; and 2), transferring an acknowledgement message (after training) or
a boolean authentication value (testing) from the TEE to the Rich OS.

3.4.3 OP-TEE

OP-TEE [160] is an open-source, GlobalPlatform-compliant TEE framework de-
veloped by Linaro, which currently supports executing alongside a custom mini-
mal Linux-based kernel; Debian (also Linux-based); or, for certain development
boards, Android OS. OP-TEE implements the GlobalPlatform system architecture
(see Section 2.4.7 of Chapter 2) using ARM TrustZone, and allows host applica-
tions executing in the untrusted REE to communicate over the GlobalPlatform
Client API to access Trusted Applications (TAs) executing in OP-TEE. A Linux
driver is provided that uses ARM-based Secure Monitor Calls (SMC) to imple-
ment world transitions between client applications in the REE and TEE TAs (see
Section 2.4.4). The OP-TEE OS provides interfaces for TAs to use, amongst oth-
ers, software- and hardware-based cryptographic operations (depending on the
development board), external SEs, clocks and timers, and secure storage using
the sealing abstraction in the GlobalPlatform Internal API. Internally, OP-TEE
currently uses cryptographic implementations from LibTomCrypt, such as for
AES, SHA-2, RSA, Diffie-Hellman and Elliptic Curve Cryptography (ECC9). The
reader is referred to the OP-TEE repository10 for a list of currently supported
development boards, current issues, and existing and planned feature support.

Unsurprisingly, memory consumption quickly became problematic when
working with large datasets within OP-TEE. For the current OP-TEE release (July
2018), 32MB RAM is allocated for the TEE kernel and all resident TAs, with the
rest allocated to the untrusted world OS. For a standard TA, the Linaro Working

9At present, GlobalPlatform ECC support is limited to NIST-approved curves up to P521.
10OP-TEE: https://github.com/OP-TEE/optee_os

https://github.com/OP-TEE/optee_os
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Group11 recommends a default stack and heap size at 1kB (stack) and 32kB (data)
respectively. While this can adjusted to a virtually arbitrary limit based on the
RAM capabilities of the chosen platform – 2GB of RAM on our development
board (HiKey LeMaker), which must also accommodate the REE – the Linaro
Working Group recommends a maximum of 1MB for the stack and heap. These
recommendations are advised to maximise the RAM available to the REE. For the
purposes of this test-bed, this was exceeded in order to accommodate data above
1-day’s worth: to 1MB and 40MB for the stack and heap respectively in order to
accommodate 21-days worth of training data for each user. (In comparison, Intel
SGX supports up to 128MB PRM in RAM by default). As such, a potential OEM
wishing to deploy TEE-based CA must be aware of CA’s larger run-time memory
requirements.

The design of the OP-TEE test-bed comprises a REE-side application that
communicates through the GlobalPlatform Client API, over the SMC secure
monitor, and to the corresponding TA hosted by the TEE. Currently, OP-TEE does
not support C++ TA development – requiring TAs and accompanying REE-side
client applications to be written in C (C99, precisely) and compiled with GCC12.
The OP-TEE CA TA exposed simple training and testing API functions for each
algorithm, which were available to the untrusted REE client application. The
algorithm code-base was identical to the SGX implementation in nature, but
rather than communicating over the Intel SGX enclave boundary with its host
application, the OP-TEE client application communicated over the GP Client
API with its respective TA. Both test-beds exposed the same training and testing
function definitions.

3.5 Evaluation

The immediate concern was the overhead incurred with the maintenance of a TEE
application, such as world context switches (between enclave and non-enclave
environments for SGX, and SMC monitor calls using OP-TEE and TrustZone
between the client and trusted applications). For SGX, this also includes the
real-time enclave page encryption performed for preserving the integrity and
confidentiality of CPU-DRAM traffic. In this section, the evaluation of TEE
versus non-TEE CA is described using a series of benchmarks from the test-beds
in Section 3.4.

We employ the GCU dataset provided by Kayacik et al. [143], which provides
mobile sensor data collected from 7 users (staff and students at a UK university)
over a period of 2–14 weeks. The dataset is sampled at a rate of 5 minutes,

11Linaro Working Group TEE recommendations: https://wiki.linaro.org/
WorkingGroups/Security/OP-TEE

12C/C++ support in OP-TEE: https://github.com/OP-TEE/optee_os/issues/1708

https://wiki.linaro.org/WorkingGroups/Security/OP-TEE
https://wiki.linaro.org/WorkingGroups/Security/OP-TEE
https://github.com/OP-TEE/optee_os/issues/1708
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consisting of nearby WiFi access points, cell tower IDs and current applications
running on the device. Optimal sampling rates and window sizes depend en-
tirely upon scheme and the performance/security requirements of the scheme
operator (this trade-off is analysed in [157]). To avoid ambiguity, we use the GCU
dataset without re-sampling. Training set size also depends on the requirements
of the operator: more data/large training sets will invariably imposes greater
computational demands, but larger training sets have been shown to improve
scheme accuracy [136]. Because of this, we evaluate a set of training periods
discussed in related work, ranging from 1-day to 3-weeks [127], [157]. Concretely,
the following components are evaluated:

• Training: the performance of training each algorithm using sets lasting 1-,
5-, 14- and 21-days, reflecting related work and beyond. kNN is unique
in having no dedicated training phase, so we measure the time to load
necessary sensor data into internal data structures in preparation for testing.
This is implicit in the timings of NB and LR.

• Testing: the overhead of producing the authentication decision from a
vector of sensor data. We measure the average time taken to classify one
hour of sensor data using all three of our implemented algorithms after
training each classifier for each of the aforementioned training times.

The round-trip time was measured between issuing the request from the un-
trusted world and receiving the corresponding result, i.e. an acknowledgement
and authentication decision for training and testing respectively. For Intel SGX,
this was measured using the <chrono> library from C++11, which provides a
high-resolution clock with nanosecond precision. For the strictly C99 TA imple-
mentation aboard OP-TEE, the time taken was implemented in the client applica-
tion using the C-compatible <time.h>, with microsecond precision. Aside from
this discrepancy, the algorithm implementations were identical. Compiler-level
optimisations were disabled for both the SGX and OP-TEE implementations.

The GCU data was separated into the training and test sets for each user using
a Python script. The training set represents the first 1, 5, 14 and 21 days of sensor
data from each user, thus simulating an enrollment period after purchasing the
device. We performed this for each user where possible; in total, all 7 users had
training data available for up to 14 days, while only 3 users had over 21 days
of available data. For training, we follow Li et al. [136] and Fridman et al. [141],
and randomly pair each user with another to construct negative/positive valued
training sets, which was performed pre-training within the aforementioned
Python script. Here, the test user’s readings are considered as legitimate (positive)
values, while the paired user’s values are considered illegitimate (negative). For
the authentication phase, we measure the average time taken to classify a single
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TABLE 3.3: Mean F1-scores for each algorithm across all GCU
users using X-days of enrollment data (S.D. in brackets).

Method 1-day 5-days 14-days 21-days

NB 0.51 (0.02) 0.59 (0.11) 0.71 (0.16) 0.70 (0.18)
kNN, k = 3 0.55 (0.08) 0.65 (0.14) 0.80 (0.20) 0.80 (0.20)
kNN, k = 5 0.52 (0.06) 0.67 (0.19) 0.81 (0.22) 0.79 (0.19)
kNN, Avg. 0.54 (0.07) 0.66 (0.17) 0.81 (0.21) 0.80 (0.20)
LR 0.52 (0.05) 0.61 (0.12) 0.73 (0.21) 0.72 (0.20)

TABLE 3.4: Mean classification accuracy for each algorithm across
all GCU users using X-days of enrollment data.

Method 1-day 5-days 14-days 21-days

NB 0.52 (0.03) 0.58 (0.13) 0.71 (0.23) 0.68 (0.16)
kNN, k = 3 0.56 (0.06) 0.67 (0.15) 0.82 (0.20) 0.80 (0.20)
kNN, k = 5 0.54 (0.06) 0.66 (0.18) 0.82 (0.19) 0.81 (0.20)
kNN, Avg. 0.55 (0.06) 0.67 (0.17) 0.82 (0.20) 0.81 (0.20)
LR 0.54 (0.05) 0.58 (0.13) 0.74 (0.21) 0.69 (0.17)

feature vector. These feature vectors comprise hourly segments of all the readings
after the enrollment date until the end of the file for each user. The average time
was computed to classify each individual feature vector across users.

For SGX, the evaluation was performed using a consumer laptop – a Lenovo
Thinkpad T460s with an SGX-enabled Intel i5-6200U CPU (2.8GHz clock) and
8GB DDR4 RAM (2133MHz) – using Microsoft Windows 10 as the deployment
platform. For the OP-TEE implementation, a HiKey LeMaker development board
was chosen featuring a HiSilicon Kirin 620 SoC with 2GB DDR3 RAM (800MHz)
and an ARM Cortex A53 CPU (eight-cores at 1.2 GHz with TrustZone extensions).

While we use methods and modalities from related work, it is not an exact
replication of an existing multi-modal CA scheme; the reasons for this, along
with other limitations, are discussed later in Section 3.5.2. As such, we indicate
some error rates for our baseline scheme using the GCU dataset in Tables 3.3 and
3.4 to contextualise the performance results presented in Section 3.5.1. Table 3.3
indicates the F1-scores13, as used in [137], [140], [142], defined as a function of
each classifier’s precision, the number of positive identifications that were actually
correct, i.e. true positives (TP) divided by TP and false positives (FP); and recall,
the number of actual positives that were correctly identified, i.e. TP divided
by TP and false negatives (FN). The equations for precision and recall, and the
F1-score are given in Equations 3.4 and 3.5 respectively. We also provide the
classification accuracy in Table 3.4, as used in [145], defined as the number of
correctly identified true positive (TP) and negative (TN) results as a proportion
of all outcomes (Equation 3.6). To clarify, a ‘positive’ result is where the user

13Also known as the F-score or F-measure.
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TABLE 3.5: Training phase. Mean wall-clock training times across
all users using X-days of enrollment data conducted ten times (in

milliseconds).

Method 1-Day 5-Days 14-Days 21-Days

Lenovo T460s

NB 80.45 (16.07) 1040 (278.0) 3650 (606.6) 3534 (636.2)
kNN, k = 3 64.50 (16.50) 655.2 (95.84) 2218 (227.2) 1978 (429.3)
kNN, k = 5 66.57 (15.09) 660.4 (76.80) 2278 (304.9) 1868 (315.9)
kNN, Avg. 65.54 (15.80) 657.8 (86.32) 2248 (266.1) 1923 (372.7)
LR 2027 (26.11) 8843 (101.3) 12114 (421.8) 13018 (843.5)

SGX NB 3.652 (0.557) 20.29 (2.479) 55.49 (7.027) 57.19 (13.95)
SGX kNN, k = 3 2.005 (0.189) 11.46 (1.619) 30.74 (3.129) 25.97 (9.170)
SGX kNN, k = 5 1.938 (0.347) 11.74 (1.339) 31.13 (4.053) 30.21 (1.828)
SGX kNN, Avg. 1.971 (0.268) 11.60 (1.479) 30.93 (3.591) 28.09 (5.499)
SGX LR 15.68 (3.73) 90.30 (5.77) 139.65 (15.90) 120.12 (14.11)

HiKey LeMaker

NB 133.7 (20.39) 1952 (261.6) 4322 (557.2) 4334 (497.0)
kNN, k = 3 116.4 (19.74) 1359 (98.08) 3989 (336.4) 3897 (399.2)
kNN, k = 5 122.3 (18.22) 1328 (153.3) 4060 (349.5) 3904 (273.7)
kNN, Avg. 119.3 (18.98) 1344 (125.7) 4025 (342.9) 3901 (336.5)
LR 3840 (261.4) 14611 (571.3) 20901 (1018) 20472 (1277)

OP-TEE NB 145.2 (17.10) 1997 (147.4) 4401 (327.3) 4476 (433.4)
OP-TEE kNN, k = 3 130.3 (24.05) 1398 (150.0) 4165 (343.2) 4089 (353.8)
OP-TEE kNN, k = 5 136.8 (27.82) 1424 (102.6) 4173 (275.4) 4062 (385.0)
OP-TEE kNN, Avg. 133.6 (25.94) 1411 (126.3) 4169 (299.3) 4076 (369.4)
OP-TEE LR 4186 (110.1) 14758 (488.5) 21305 (982.5) 20736 (1146)

is authenticated, while a ‘negative’ is where the user is not authenticated. We
compute the metrics across all users for the enrollment periods and algorithms
considered.

Note that, while our results are below the state of the art – 0.81 (F1) and 0.82
(Acc.) in the best case using kNN with 14-days of enrollment data, versus 0.97
(F1) in [137], 0.98 (Acc.) in [145], 0.95 (F1) in [142], and 0.90 (F1) in [140] – the aim
of this work is to provide a first step in investigating the feasibility of TEE-based
CA, rather than proposing a novel authentication scheme.

Precision =
TP

TP + FP
Recall =

TP

TP + FN
(3.4)

F1score = 2 · Precision ·Recall
Precision+Recall

(3.5)

Accuracy =
TP + TN

TP + TN + FP + FN
(3.6)
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TABLE 3.6: Testing phase. Mean wall-clock time to classify one-
hour of sensor data from X-days of training data across all users

(in microseconds).

Method 1-Day 5-Days 14-Days 21-Days

Lenovo T460s

NB 125.7 (5.936) 142.7 (8.712) 158.3 (40.33) 153.3 (35.64)
kNN, k = 3 458.4 (64.23) 2539 (319.0) 6554 (972.0) 5976 (1623)
kNN, k = 5 464.1 (55.69) 2481 (258.5) 6634 (998.9) 5949 (1803)
kNN, Avg. 461.3 (59.96) 2510 (288.8) 6594 (985.5) 5963 (1713)
LR 95.2 (8.838) 102.8 (30.39) 112.9 (36.90) 113.5 (40.01)

SGX NB 14.28 (2.498) 14.17 (0.951) 12.86 (1.864) 14.67 (9.333)
SGX kNN, k = 3 100.4 (20.02) 584.7 (63.30) 1598 (231.6) 1481 (468.5)
SGX kNN, k = 5 100.8 (16.79) 590.6 (63.90) 1593 (197.8) 1452 (431.0)
SGX kNN, Avg. 100.6 (11.26) 587.7 (63.60) 1596 (214.7) 1467 (449.8)
SGX LR 8.876 (1.002) 9.405 (2.803) 9.384 (0.776) 9.523 (1.249)

HiKey LeMaker

NB 241.0 (14.22) 250.2 (45.41) 267.5 (30.18) 280.4 (37.60)
kNN, k = 3 878.2 (70.68) 3801 (291.9) 11560 (1745) 10007 (1419)
kNN, k = 5 873.0 (66.35) 3988 (282.7) 12010 (2327) 10554 (2136)
kNN, Avg. 875.6 (68.51) 3895 (287.3) 11785 (2036) 10281 (1778)
LR 203.3 (9.334) 250.8 (9.750) 257.4 (12.81) 252.3 (10.19)

OP-TEE NB 535.5 (17.65) 560.2 (25.05) 552.1 (30.18) 531.9 (49.56)
OP-TEE kNN, k = 3 1139 (93.81) 4212 (302.5) 12388 (883.0) 12046 (1071)
OP-TEE kNN, k = 5 1180 (88.02) 4376 (355.8) 12505 (1420) 12154 (1367)
OP-TEE kNN, Avg. 1160 (90.92) 4294 (328.2) 12447 (1152) 12100 (1219)
OP-TEE LR 484.7 (12.57) 495.6 (11.03) 521.0 (20.65) 528.7 (16.21)

3.5.1 Results Discussion

We present our findings in Tables 3.5 and 3.6. As expected, training times for
Logistic Regression and Naïve Bayes far exceed kNN, which requires no dedi-
cated training procedure. Instead, during testing, kNN uses an exhaustive search
through every member of the training set to find its k closest neighbours. As
such, we expected kNN to yield the reverse effect, i.e. becoming dramatically
slower in testing. This is compared to NB where, once priors and conditionals
are computed, computing the class is a series of joint probability multiplications,
which performs in near-constant time. LR simply computes the logit function
for a given feature vector and the parameters acquired by minimising the least-
squares cost function (see Section 3.4.2). In general, LR was the costliest to train,
while kNN was the costliest to test. These trends were consistent across all days
worth of data.

The results of training and testing drop slightly between 14 and 21 days,
which we found was due to the variance in device usage between users. While
the dataset is sampled at 5-minute intervals, this does not account for periods
when the device is disabled. Thusly, Figure 3.4 depicts the mean number of
samples captured per day for each participant. Only three users had data lasting
21-days – users 1, 2 and 5 – constituting 198 samples per day per user on average,
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FIGURE 3.4: Mean samples per day per participant in the GCU
dataset [143].

FIGURE 3.5: TEE versus non-TEE overhead averaged across train-
ing and testing. (a) training and (b) testing overhead of OP-TEE
versus untrusted world; and relative SGX speed-up of (c) training

and (d) testing versus non-SGX implementation.
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while, for 14 days, this rises to 245 samples per day. The differences in sample
‘density’, due to the usage variance between users, is the primary driver behind
the cause for similar timings between 14-day and 21-day training and testing.
This lower training times of 21-days worth of data is hence biased heavily by the
unusual sparsity of User 1. Evidently, device usage is a significant influence in
determining CA training and testing times.

The comparative performance of each platform is illustrated in Figure 3.5.
As expected, OP-TEE yields a small overhead during testing and training. In
training, this yields a small overhead of approximately 1.5–4.25% depending
on method. In absolute terms (Table 3.5), this ranges between a 12ms overhead
(one-day training average with NB) to 404ms (14-days training average with LR).
While certainly noticeable in isolation, a maximum overhead of 404ms is unlikely
to be burdensome, as training/enrollment is either a one-off or occasional task.
Occasional re-training may occur, for example, once every week or month to
refresh a model that no longer reflects the user’s current behaviour, say, due to
natural changes in the user’s (permanent) location, e.g. residency, or application
usage (after installing new applications or deleting unused ones). During testing,
it seems that OP-TEE yields a high relative overhead for NB and LR of approxi-
mately 110% versus 10% for kNN. However, this relative overhead is somewhat
misleading as the absolute kNN testing time is the highest of all (at most 12,154µs
for kNN versus 528.7µs for LR with 21-days of training data). While kNN has
a substantially lower training time, its exhaustive search during testing yields
a 20-24 times overhead relative to the absolute testing times NB and LR. One
reason for the high relative TEE overhead of NB and LR is the greater impact that
context switching plays relative to the actual testing time.

To our knowledge, no literature exists regarding the precise performance
overhead incurred by OP-TEE and ARM TrustZone versus a suite of untrusted
applications. Benchmarking the latency incurred by SMC calls and OP-TEE OS
internals in isolation is out-of-scope in this paper. However, we believe that
such an investigation would be worthwhile for the benefit of TEE applications in
general, e.g. DRM and payment tokenisation, as a separate research contribution.

Most surprising is the substantial difference between SGX and non-SGX
performance. At first, we believed SGX would incur some overhead, with the
additional memory enforcement, e.g. encryption of enclave pages between the
CPU and DRAM, and context switching. Yet, it exceeds the REE by approximately
60-100 times for training and 4–11 times for testing, depending on the algorithm.
Upon investigation, while SGX and non-SGX implementations were identical,
enclave applications are linked with Intel’s own C (sgx_tstdc.lib) and C++
standard libraries (sgx_tstdcxx.lib), which must be compulsorily linked
to any SGX enclave application. These ‘trusted’ libraries are used to provide



3.5. Evaluation 95

functions that can only be used within enclaves. At present, enclaves do not
support I/O operations or functions that rely upon OS system calls. Indeed,
attempting to link non-Intel C/C++ standard libraries will “either fail the enclave
signing process or cause a runtime failure due to the use of restricted instructions” [161].
Intel’s trusted libraries provide an optimised subset of compatible functions
based on Intel’s Integrated Performance Primitives (IPP) [162]. This suite offers
parallelised, multi-threaded optimisations of standard routines based on the most
recent AVX and SSE instruction sets, which “significantly increases performance”
over unoptimised implementations [162]. Comparatively, the non-SGX portion
uses the Microsoft Visual C++ standard library with no such enhancements.

Interestingly, training times benefit most, due likely to the computationally
intensive methods involved, namely computing prior and conditional proba-
bilities for Naïve Bayes, and linear optimisation for LR. Further investigations
revealed that IPP does favour such arithmetical14 and string-based15 operations
strongly. Unfortunately, the fact that SGX’s C/C++ standard libraries must be
compulsorily linked is an unwelcome distortion in gauging the overhead of SGX
versus non-TEE performance directly.

What we can conclude, however, is that the observed performance of SGX
raises security concerns in itself: there is a clear incentive for developers to move
non-critical components to enclaves if some perceived security benefits can be
gained with little performance overhead. This also applies to OP-TEE as the
timing overhead, in real terms, is not dramatically greater than the untrusted
world. Yet, recklessly shifting code to a TEE can dangerously increase the TCB
of the trusted application, which may expose security-critical components to
logical flaws or programming bugs from non-security related code sections. The
essence of a secure application in any TEE is to minimise its TCB to that which is
functionally necessary, and any incentive to increase the TCB for performance
gains may undermine the application’s overall security in reality. A second
observation is that, for both TEEs, algorithm choice has a far more significant
effect on training and testing times than whether to use a TEE.

3.5.2 Limitations Discussion

Currently, our test-bed does not evaluate the small number of proposed CA
approaches using hand-crafted probability models or unsupervised learning, as
in e.g.[143] and [135]. Rather, we favour the majority of work by using binary
supervised learning with dedicated enrollment and testing phases, as per [127],
[134], [136], [138], [141]. At first, it would seem obvious to re-implement the
schemes from related work on commodity handsets. However, this task is

14https://software.intel.com/en-us/node/502094
15https://software.intel.com/en-us/node/501987

https://software.intel.com/en-us/node/502094
https://software.intel.com/en-us/node/501987
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critically impeded by the closed nature of commercial smartphone TEEs, such as
Trustonic Kinibi, as used on the Samsung Galaxy S6/7/8 [107]. GlobalPlatform-
complaint TEEs on mobile devices are generally locked before deployment (see
Section 2.4.7 of Chapter 2), meaning developing and installing TAs is not possible
without OEM cooperation. Another note is that TEEs on consumer handsets host
and execute a number of other TEE applications simultaneously, such as for DRM
(e.g. WideVine16 for video copyright protection) and payment security, which
could potentially affect the latency of a CA scheme in practice. We attempted
to mitigate this limitation by using commercially-available hardware in both
test-beds, with similar specifications to a commodity device and using open-
source tooling (OP-TEE). The SGX implementation used the Intel SGX SDK on an
off-the-shelf laptop (Lenovo T460s) to reflect multi-modal CA on a more powerful
mobile device.

Furthermore, only three algorithms were implemented as part of the test-bed
– Naïve Bayes, Logistic Regression and k-Nearest Neighbour – due primarily
to the difficulty of developing significantly more intricate learning algorithms
correctly for each TEE without the availability of compatible, peer-reviewed
libraries. As mentioned previously, SGX does not support fundamental C++
libraries, such as <sstream>, which severely impeded the adoption of open-
source machine learning implementations. The development of bespoke, SGX-
compatible algorithms was hence necessary, and classification algorithms with
smaller code bases were favoured to assure correctness. Given the widespread
deployment of SGX, it is hoped that correct SGX implementations will emerge
over time in order to evaluate a greater set of learning algorithms correctly.

A major but practically insurmountable limitation is that, in a real-life deploy-
ment, one would expect sensor data to be collected in real-time over a trusted
path directly between the TEE and the relevant sensing hardware, without expo-
sure to the untrusted world. Ideally, a system-on-chip should protect the relevant
sensors from untrusted world accesses using the TrustZone Protection Controller
(TZPC), described previously in Section 2.4.4 of Chapter 2. Unfortunately, OP-
TEE and our associated development board did not support this. An appropriate
SoC would have to be designed and manufactured, alongside the development
of kernel-level OP-TEE extensions to support the configuration of protection
controllers with the appropriate sensing hardware. This problem is inherent
with Intel SGX, which does not currently support a secure I/O path between
peripherals and enclaves.

A related limitation was the inability to conduct an on-line analysis using sen-
sors connected directly to the TEE. As a result, we chose to utilise the modalities

16WideVine: https://storage.googleapis.com/wvdocs/Widevine_DRM_
Architecture_Overview.pdf

https://storage.googleapis.com/wvdocs/Widevine_DRM_Architecture_Overview.pdf
https://storage.googleapis.com/wvdocs/Widevine_DRM_Architecture_Overview.pdf
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available from the GCU dataset provided by Kayacik et al. [143]. Acquiring data
for CA is a costly and non-trivial task, often requiring users to carry devices for
many weeks, or potentially months, for a realistic evaluation. In future work,
extra modalities would allow a comparison for how trusted CA scales with input
sources, particularly with denser and higher-dimensional data sources like touch-
points and keystrokes. Because of these limitations – primarily the lack of access
to TEEs aboard commodity mobile handsets – we stress that our experiments
should be considered as indicative results. However, we show that the application
of TEEs to CA is a promising solution in protecting its assets from root-level
on-device adversaries.

3.6 Conclusion

In this work, we introduced the need for trusted execution CA and broadened
the existing threat model to incorporate system-level adversaries encountered in
a practical deployment. To this end, we examined two standardised constructs
for offering greater trust and security provisions without compromising deploya-
bility: Secure Elements and Trusted Execution Environments. After analysing the
potential security threats to CA schemes in practice, the features and suitability of
SEs and TEEs were analysed as potential solutions. Following this, we proposed
using a TEE to encapsulate sensitive aspects of a CA scheme in order to address
the extended threat model. We implemented and evaluated this using two test-
bed environments using Intel SGX and OP-TEE – a GlobalPlatform TEE using
ARM TrustZone – with commercially-available hardware. This was followed by
a suite of indicative performance measurements from a variety classifiers and
sensor modalities used in related work using a public dataset from real-world
users. Our results indicate that CA can be performed on Intel- and ARM-based
TEEs with only a relatively modest performance overhead (up to a maximum
of 404ms in absolute terms). Our work indicates that applying TEEs to CA is
practical towards protecting the run-time execution state of CA schemes from a
powerful adversarial model.

3.6.1 Future Work

As part of our ongoing research, we aim to investigate the following:

• Evaluating the performance overhead of context switching, SMC calls and
OP-TEE TEE internals. Currently, there is little literature on the precise
overheads imposed by individual TEE components.
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• A real-time evaluation of trusted CA on various device types, such as wear-
ables, and the associated performance penalty on differing computational
platforms.

• Collecting a new dataset comprising touch-points, keystrokes and addi-
tional environmental sensors, and analysing how trusted CA scales with
input sources from additional modalities.
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Chapter 4

On Mutually Trusted Channels for
Remote Sensing Devices with TEEs

4.1 Introduction

The past two chapters explored the range of secure and trusted execution tech-
nologies available to modern embedded and mobile systems in Chapter 2, before
analysing and evaluating their potential application to continuous authentication
in Chapter 3. This chapter continues this theme of trusting data from remote
sensing devices in sensitive IoT deployments by examining the challenges sur-
rounding the transmission of data between TEEs hosted on remotely located
devices.

4.1.1 Motivation

The introductory chapter of thesis (Chapter 1) introduced and motivated the
challenges of trusting data transmitted from remote sensing devices in order
to, ultimately, inform critical-decision making. This may be conducted by a
largely automated system based on artificial intelligence (AI), or the data could
be aggregated and visualised on a human-machine interface (HMI) to inform user
input. These devices, which are more than likely to be largely unattended – that
is, constant or frequent expert inspection is likely to be prohibitively expensive –
are being, or have been, proposed to be deployed in sensitive environments.

Previous literature in trusted sensing has focused heavily on the TPM as a
root of trust, but these forgo desirable features of recent developments in TEEs,
such as secure I/O. In TPM-based literature, remote attestation has underpinned
previous solutions by enabling a remote verifier to securely verify the operating
state of a target platform at a distance based upon its measurements collected
at boot-time (or shortly thereafter, also known as DRTMs, which were seen in
Chapter 2). In this chapter, we examine the state-of-the-art of remote attestation,
including the benefits and challenges of static attestation, dynamic attestation,
attesting groups of devices (group attestation), and providing trust assurances of
both communicating devices in a single protocol run (mutual attestation). From
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this examination, we raise the challenge of secure TEE-to-TEE communication
between remote devices with mutual trust assurances, which has not hitherto
been addressed in existing literature.

To this end, we develop two novel secure and trusted channel protocols that
perform mutual or one-way remote attestation in a single run with TEEs. We
specify the security and functional goals relevant to TEE mutual attestation aimed
at in this work, including the challenge of remaining agnostic to particular TEE
architectures. This includes any differences in deployment assumptions, and the
crucial challenge of avoiding the disclosure of security-sensitive data outside the
TEEs on either device, i.e. their untrusted worlds.

4.1.2 Chapter Structure

In this paper, we first review related work in trusted sensing platforms gener-
ally (Section 4.2.1), before proceeding to covering the state-of-the-art in remote
attestation (Section 4.2.2). In particular, the issue of mutual trusted channels for
TEEs – the notion of secure TEE-to-TEE communication with trust assurances
– has received little attention in past literature. To address this, we present a
novel protocol that provides secure and trusted channels between two remote
TEEs (Sections 4.4 and 4.5), where trust can be verified uni-directionally or bi-
directionally through one- and two-way remote attestation respectively. This
provides resilience to sophisticated integrity and confidentiality software at-
tacks conducted in the intermediate components from REE- and network-level
adversaries. Our work is applicable to sensing applications requiring strong
mutual trust assurances. We also discuss measures for facilitating interoperability
between disparate TEEs, such as Intel SGX and the GlobalPlatform TEE. The
protocols are subjected to formal symbolic analysis using Scyther, before pre-
senting a performance evaluation using GlobalPlatform-compliant TEEs on two
networked ARM development boards (Sections 4.6 and 4.7). Lastly, we conclude
our findings and identify future research directions in Section 4.8.

4.1.3 Contributions

The work presented in this chapter provides the following contributions:

• The first investigation into the challenge of TEE intercommunication be-
tween remotely-located TEEs on distinct constrained devices.

• The design and proposal of two secure and trusted protocols for facilitating
TEE intercommunication based upon the relevant security and functional
goals. The protocols provide either uni- or bi-directional trust assurances
for addressing cases where one or both devices contain TEEs respectively.
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Both proposed protocols are subjected to formal symbolic verification using
the Scyther analysis tool by Cremers [163], which found no attacks under a
Dolev-Yao adversarial model. The Scyther protocol scripts are provided in
Appendix A.

• A performance evaluation in a test-bed implementation containing two
ARM development boards hosting GlobalPlatform TEEs. The protocols
execute in reasonable time (under 1.7 seconds round-trip on average), with
approximately four-times overhead versus TLS and SSH without optimisa-
tion.

This chapter is based on work from our following publication:

• C. Shepherd, R. N. Akram, and K. Markantonakis. “Establishing Mutually
Trusted Channels for Remote Sensing Devices with Trusted Execution Envi-
ronments”, in Proceedings of the 12th International Conference on Availability,
Reliability and Security, ser. ARES ’17, ACM, 2017, 7:1-7:10.

4.2 Related Work

This section reviews related work concerning trusted sensing generally, before
moving to an examination of remote attestation mechanisms.

4.2.1 Trusted Sensing Platforms

Sensing with standardised trust technologies has attracted notable attention in
past literature; we discuss relevant work and highlight their contributions. Liu
et al. [164] propose two abstractions for providing trust in sensing platforms
and their data. This comprises (1), sensor attestation, which signs each reading
with a TPM’s Attestation Identity Key (AIK) and verified with its public key;
platform integrity is preserved using static remote attestation, defined in Section
4.2.2; and (2), sensor seal, in which encrypted secrets are bound to the TPM and
released once sensor readings satisfy a given policy. These two concepts are
evaluated using ARM TrustZone with a TPM emulated in software, and Credo, a
TPM-backed hypervisor, for X86 systems. Both are evaluated yielding moderate
overhead.

Gilbert et al. [165] examine TPMs to provide data assurance in sensitive
sensing applications. Similarly, the authors propose a TPM-backed hypervisor
to protect device drivers and sensing processing applications from software
integrity attacks. Untrusted user applications are executed in a separate guest
domain to facilitate isolated execution, with the hypervisor acting as a secure
monitor. It is proposed to sign sensing measurements with a signed TPM quote,
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which includes the TPM Platform Configuration Register (PCR) responsible for
the sensing application. Remote attestation can then be used by the verifier to
ascertain assurances regarding the expected operating state of the device.

Saroiu et al. [166] propose two sensing architectures using TPMs: (1), a TPM-
backed hypervisor that sandboxes users’ software in a guest Virtual Machine
(VM), and a root VM with privileged access to sensor drivers and the TPM.
The root VM signs sensor readings with the TPM to prevent modification once
passed to the user VM. Design (2) proposes attaching a TPM to each sensing
microcontroller to protect against a malicious kernel. Here, the microcontroller
signs readings using the TPM independently of the OS. Remote attestation can
then be used to either attest the state of a single TPM, or to attest all TPMs
collectively that are attached to each sensing microcontroller. The authors note
that (1) is less costly – both performance-wise and economically – but provides
fewer security guarantees.

This thesis continues its focus on providing greater trust assurances in modern
constrained sensing platforms – a known barrier to deploying beneficial services
to end-users [166]. Providing evidence of platform integrity is a core component
to assuring remote providers that may rely on sensor data sourced from the
device. Next, we examine the process of securely reporting platform integrity
measurements – remote attestation – in greater detail below.

4.2.2 Remote Attestation

Remote Attestation (RA) was first introduced in Section 2.3.2 of Chapter 2. RA is
an interaction protocol between a prover, P , and verifier, V , in which V securely
ascertains the current state of the remote of P . The goal of RA is to assure V
that P is operating with an expected platform configuration, which is conducted
remotely, such as over the Internet or Local Area Network (LAN). In this section,
we examine a range of RA techniques based on static, hybrid, dynamic, property-
based, group and mutual attestation. We note that attestation is a continually
evolving domain; the reader is referred to work by Steiner and Lupu [167] and
Abera et al. [168] for a study of existing attestation techniques in greater detail.

Hardware-based Static Attestation

This section briefly describes hardware-based static attestation as used by the
TPM and Intel SGX. TPMs collect a set of platform configuration measurements
upon boot, call this set M = {PCR1, PCR2, . . . , PCRn}, which is used in con-
junction with some secure channel protocol to transmit M to V . M is a chain of
integrity measurements, comprising critical software components, that serves as
the evidence with which V is reasonably convinced that the system is running
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to expectations. Any deviation in these measurements, e.g. bootloader or BIOS,
which are stored in the PCRs is an indication that it has been modified. (Note
that the TPM does not take decisions itself from these measurements: it accepts
and stores them in a secure and reliable manner. It is the responsibility of V to
decide and enact upon the values in M ). For reasons of authenticity and integrity,
the measurements are transmitted as part of a signed data structure known as a
quote report, Q, using the TPM’s AIK. TPM 2.0 stipulates DAA to solve the issue
of AIKs being used to link particular TPMs. DAA uses a group signature scheme
in which one public-key is responsible for verifying multiple private AIKs, thus
preventing an adversary from linking signed quotes by unique, TPM-specific
keys to an individual platform [71].

Intel SGX’s remote attestation mechanism, which was described in detail in
Section 2.4.6 of Chapter 2, operates using a similar abstraction. In short, SGX
uses the EPID protocol by Brickell et al. [169] – a DAA-based RA scheme with
revocation support – in order to attest a target enclave. After receiving an attesta-
tion challenge, the untrusted host application requests its enclave to produce an
attestation. Next, SGX uses a quoting enclave, with access to a hardware-bound
EPID attestation key, to measure and sign a report comprising properties of target
enclave, including its code, version and ID. The final quote is transmitted to the
challenger over a secure session based on the Sigma protocol [170], as used in
Internet Key Exchange (IKE)v1 and v2. Here, ECDH is used for the actual key
exchange, while ECDSA is used for authentication. The verifier can inspect the
contents of the quote for assessing the enclave’s operating state, i.e. that the cor-
rect version enclave is executing, and may use the Intel Attestation Authority to
verify the quote’s authenticity, which possesses public portions of the hardware-
bound EPID keys. Evidently, this process is controlled stringently by Intel, which
functions as a trusted third-party for CPU key provisioning. Comparatively, the
GlobalPlatform TEE specifications are yet to standardise a remote attestation
mechanism.

Software-based Static Attestation

Both Intel SGX and TPM-based attestation operate from a hardware-based root-
of-trust. To eliminate the need for additional hardware, attempts been made to
provide software-based static attestation; we now briefly review some notable
schemes to this end. Shaneck et al. [171] propose a mechanism for detecting
the unauthorised tampering of device memory contents on embedded systems.
Here, the verifier constructs an attestation routine that randomly measures the
target device’s static memory, which is sent to and executed by the device. A
checksum of the measurements is then returned to the verifier, who compares it
to a known value computed beforehand. To increase the difficulty of attacks that
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dynamically return tampered memory addresses to their expected (untampered)
values, the attestation routine is obfuscated and a timeout is used by the verifier,
after which any responses are rejected. Seshadri et al. [172] propose SWATT
for software-based static attestation using timings, which employs a similar
approach in measuring program memory contents against a value known to
the verifier. In this work, the verifier sends a randomly-generated challenge to
the device, which uses pseudo-random memory traversal to measure its memory
contents. Here, the verifier’s challenge seeds a pseudo-random number generator
(PRNG) to generate the target memory addresses. A checksum is then iteratively
constructed from the memory contents of these addresses on the device, which is
subsequently returned to the verifier who possesses a checksum of the expected
value measured a priori. Like [171], the time taken to measure and return the
checksum to the verifier is used as a countermeasure against attempts to alter
tampered memory contents back to their expected state. Using time as a side-
channel to perform attestation is utilised similarly by the Pioneer system by
Seshadri et al. [173], which studies its feasiblity on complex CPUs, and presents
an implementation and evaluation on an Intel Pentium IV Xeon CPU.

The above approaches, however, present challenges with respect to security
and reliability [167], [168], [174]. Castelluccia et al. [174] demonstrate the suscep-
tibility of memory-measuring schemes to return-oriented programming (ROP)
and compression attacks. Furthermore, the authors conclude that “time-based
attestation schemes are very difficult, if not impossible, to design correctly” due to the
challenge of selecting secure and reliable timing thresholds across differing plat-
form configurations [174]. Additionally, they are generally limited to ‘one-hop’
networks, and are not resilient to impersonation attacks from adversaries who
control two identical devices; in this case, an authenticated channel is necessary,
such as a secure physical connection [167], [168].

Hybrid Attestation

Hybrid attestation schemes have also been explored in the literature that use
an amalgam of the aforementioned hardware- and software-based attestation
mechanisms. In this vein, El Defrawy et al. [175] propose the SMART architecture
that introduces small hardware changes to a micro-controller unit (MCU) acting
as the prover. These changes provide read-only and guaranteed execution of
attestation code in ROM, and secure key storage. At the beginning of SMART,
the verifier transmits parameters to the proving device, including the memory
boundary to attest (between a and b) and a random nonce to address replay
attacks. Next, the ROM-resident code measures an HMAC of the contents of the
memory region [a, b] under a key in the MCU’s secure storage, which is available
only to the ROM attestation code. The resulting HMAC measurement is returned
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to the verifier, who verifies it by recomputing the measurement under the same
key and parameters, i.e. memory boundaries.

Koeberl et al. [176] propose TrustLite – a generic hardware architecture for
software isolation on embedded devices. The proposal introduces a new hard-
ware unit aboard the SoC, known as the Execution-Aware Memory Protection
Unit (EA-MPU), for protecting security software modules known as ‘trustlets’.
Upon device initialisation, a software-based Secure Loader is used to load the
desired trustlets and their data into on-chip memory; it also programs a Memory
Protection Unit (MPU) to protect trustlet memory regions and its own code and
data regions from unauthorised accesses. The MPU is akin to a standard MMU,
but without support for virtual memory and paging; the MPU is augmented
to provide ‘execution awareness’ (hence EA-MPU), which also accounts for the
target and origin of memory access requests. Ultimately, the EA-MPU aims to
ensure that a particular trustlet’s data can only be accessed by the code of that
trustlet, which can be used to implement a SMART-like attestation mechanism in
[175]. Notably, unlike SMART, TrustLite can execute multiple trustlets concur-
rently and provide updates. Related to this, we note that the TyTAN proposal by
Brasser et al. [177] utilises an EA-MPU for similar ends and provides additional
features over TrustLite, such as secure interprocess communication, dynamic
loading and real-time scheduling; the proposal is implemented and evaluated on
an Intel Siskiyou Peak embedded platform.

Dynamic Attestation

Dynamic attestation techniques focus on the shortcomings of static attestation
schemes in the detection of run-time attacks that hijack application data and
control flow, e.g. return-oriented programming (ROP) attacks. As such, the
dynamic attestation paradigm concentrates on producing attestation values at
run-time, rather than being measured statically. An example scheme, C-FLAT, is
proposed by Abera et al. [75] for remotely attesting the target device based on
application control flow. Firstly, the vendor creates an application control flow
graph (CFG) that is distributed to the verifier and proving device(s). During
attestation, the verifier generates a challenge, i, and transmits it to the prover; the
prover executes the application with input i, and creates an incremental hash,
h, of each traversed CFG node. This is performed within a TEE or other trusted
entity that signs h using a device-specific key, akin to a quote, and transmits this
signed value to the verifier over a secure channel. C-FLAT is implemented on a
Raspberry Pi 3 with ARM TrustZone. The authors note, however, that C-FLAT
is limited to simple applications. Applications with large and looping CFGs, or
require explicit I/O, are unsuitable candidates for timely attestation responses.
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Kil et al. [178] and Davi et al. [179] propose an alternative approach to dy-
namic attestation based on the use of a trusted monitor to measure and assess
application states aboard the device, akin to an intrusion detection system (IDS).
This includes approaches based on monitoring system calls and marking and
tracking specific data structures loaded into memory using dynamic taint analysis.
Upon receiving an attestation challenge, the trusted monitor co-signs attestation
response quotes containing the TPM’s PCR values if and only if the measured
data structures and other measured attributes do not deviate from their expected
parameters.

In general, dynamic attestation is affected by several issues: 1), it is non-trivial
to identify ‘good’ states of run-time application objects [178]; 2), the system
must access a potentially large number of dynamic objects to assess their state,
which significantly increases overhead [179]; 3), the presence of false positives
and negatives can undermine trust in the attestation values themselves [178];
and, 4), a CFG-based approach, as per [75], implies storage of expected CFGs
on all possible communicating devices. The latter three points are particularly
major drawbacks in relation to the constrained embedded devices targeted in this
work. Such devices are likely to have limited persistent storage capacities to store
CFG graphs, and limited computational and run-time memory for performing
dynamic state analysis.

Property-based Attestation

Property-Based Attestation (PBA) was first proposed by Sadeghi and Stüble [180]
to address the shortfalls of TPM-like static attestation. The first shortfall occurs
when a platform is significantly updated and the TPM PCR values change from
its previous configuration. If data is sealed under this previous platform configu-
ration, it becomes inaccessible under the new configuration. Secondly, during
attestation, the challenger must theoretically account for a large number of dif-
fering PCR configurations of the ‘same’ software, due to system-level variations
in patch penetration and target OS. Thirdly, a forceful content provider could
unreasonably demand the presence of certain software (represented in the PCRs),
such as a particular word processing package, which has led to concerns over ven-
dor lock-in and infringing users’ freedom [181]. To address this, [180] proposes
attestation based on ‘properties’ that conform to the attesting party’s security
requirements. This way, platform configurations may have slight deviations, but
still fulfil that particularly property. A shortfall of PBA is identifying, defining
and scoping properties, but it may, for example, include a platform’s ability to
collect measurements over a trusted I/O path. It may also include its ability to
defend against a predetermined set of vulnerabilities, as suggested by Poritz et
al. [182].
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Sadeghi and Stüble [180] introduce a trusted third party (TTP), the certificate
issuer, which issues and maintains credentials that endorse a mapping of platform
configurations to known security properties. That is, Si → P = {p0, p1, . . . , pn},
where Si is a configuration mapping to a set of known properties, P . A Trusted
Attestation Service (TAS) aboard the proving platform is used to map the binary
PCR values to properties, before signing and transmitting the response to the
verifier. This abstraction allows a platform to prove its conformance to a trusted
platform configuration without revealing the precise software configuration as
raw PCR values. PBA has has spawned a range of variations covering revoca-
tion, virtualisation, and without TASs using zero-knowledge proofs [183]–[186].
However, its general criticisms include poor scalability from the need to manage
potentially an arbitrary number of configuration-property mappings. The reader
is referred to [187] for a detailed analysis of PBA and its challenges.

Group and Mutual Attestation

Another paradigm involves attesting groups or a pair of remotely communicating
devices in a single protocol run.

Asokan et al. [81] tackle attesting groups of devices organised in a swarm,
where a verifier, V , is assured of the integrity of swarm S = {s1, s2, . . . , sn}
managed by a swarm operator, OP . S is considered trusted if all of its members
are running the expected software configuration. Attestation is conducted using
static attestation from the swarm members’ software configuration; each swarm
member is provisioned with public-private key pairs certified by OP for signing
and authenticating response quotes. It is assumed that each swarm member can
communicate only with its direct neighbours; S may be dynamic in terms of its
membership. The topology of S is not known to OP and V . First, V contacts
an arbitrary member si ∈ S, which recursively attests its neighbours by way of
constructing a minimal spanning tree. The attestation responses of each member
are aggregated back to si, which appends its attestation response, before replying
to V who verifies the responses and the reported configurations.

Gasmi et al. [79] first presented the need for secure and trusted channel
protocols (STCPs) where during a protocol’s key exchange, e.g. Diffie-Hellman
(DH) or Elliptic Curve Diffie Hellman (ECDH), each party transmits its signed
platform configuration measurements before establishing the shared secret. The
authors discuss modifying the TLS 1.1 (client-server) handshake protocol to
provide authentication of each TPM, along with the transfer of PCRs representing
the devices’ platform configurations. This is performed primarily by replacing
the transfer of TLS certificates (for entity authentication) with another certificate
containing a long-lived key. This separate certificate is enhanced with Subject
Key Attestation Evidence (SKAE) – a TCG proposal that extends X.509 certificates
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to indicate that the key was created by a TPM. This certificate contains signed
PCR values from the TPM, and stipulates that a certain TCB configuration, i.e.
PCR values, must be present before it is released. The key is signed by the TPM’s
AIK using the TPM_CertifyKey operation. The proposal, however, is neither
implemented nor evaluated for potential overhead.

Greveler et al. [74] propose a mutual attestation protocol for two TPM-
equipped devices. The protocol establishes a shared session key using a 2048-bit
Diffie-Hellman (DH) key exchange, along with trust assurances based on the
transmission of a signed set of PCR values between each party. These PCR values
are signed by each TPM’s AIK as quotes; each device is transmitted the other’s
certified public AIK portion. The DH key exchange and the subsequent verifi-
cation of signed PCR values – verifying both the signatures and quote contents
– establishes a shared session key with the added benefit that both devices are
operating to expectations. Like the previous proposal, however, the protocol is
not empirically evaluated.

Similarly, Akram et al. [78] propose a mutual attestation protocol for establish-
ing trust in two TPM-enabled nodes in avionics wireless networks. This protocol
is also based on a 2048-bit Diffie-Hellman key exchange and the exchange of
signed PCR values from each device. The protocol, which is intended to run
pre-flight, supports forward secrecy as well as session resumption to compen-
sate for in-flight device power losses. It is implemented on two Raspberry Pi B
models over WiFi in ad hoc mode; the evaluation uses emulated PCR values to
compensate for the absence of actual TPMs in its implementation. The full proto-
col executes in 4.582 seconds, with approximately three- to four-times overhead
versus TLS and SSH respectively.

Akram et al. [188] present a similar STCP using the transmission of signed
device-specific authentication values with a DH-based key exchange. This is
intended for the secure and trusted application management of smart cards
operating under the User-Centric Ownership (UCOM) model. The STCP com-
prises a service provider (SP) that manages applications, e.g. installation and
deletion, upon request from users possessing an authorised smart card. The
protocol, known as P-STCP, is used between the SP and the smart card’s Trusted
Execution Manager (TEM), which performs mutual device authentication using
values from Physically Unclonable Functions (PUFs) before authorising the ap-
plication management operation. The proposal is implemented on a Java Card
and laptop acting as the SP with a 1.83GHz CPU and 2GB RAM, and exhibits
a round-trip wall-clock time of approximately 3.0 seconds, versus 4.0s and 4.2s
for TLS and SSH. Both protocols in [78] and [188] are subjected to formal sym-
bolic verification using CasperFDR [189] to assure correctness under a Dolev-Yao
adversarial model. (As a side note, PUFs and even seeding PRNGs [77], [190]
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have been suggested as a primitive with which to fingerprint and authenticate
particular devices. However, concerns still exist surrounding low PUF entropy
and high error rates [191]–[193], and protecting against statistical and machine
learning attacks [194]–[196]. These are out-of-scope in this thesis, which focuses
upon hardware-assisted execution technologies, rather than device fingerprinting
measures).

4.3 The Challenge of TEE Intercommunication

TEEs offer potential in sensing-based applications, but the absence of a generic re-
mote attestation solution impedes interoperability. This also leads to the challenge
of secure and trusted TEE-to-TEE communication on distinct remotely-located
devices with mutual trust assurances. This is particularly pertinent for sensing
applications: it is conceivable that differing TEE architectures may wish to com-
municate with each other directly, e.g. an Intel-based server-side analytics service
receiving sensitive health measurements from an ARM-based wearable, without
revealing anything to the untrusted worlds on either end-point.

As we seen, a multitude of remote attestation mechanisms exist that allows
the bootstrapping of a secure channel through which security-sensitive data can
be provisioned to the target environment. The most notable example of this is
EPID in Intel SGX [72]; however, it is only a one-way mechanism that allows
the attestation of a target Intel-based platform given the manufacturing and key
infrastructure assumptions in place, which were discussed heavily in Section 2.4.6
of Chapter 2. In other words, EPID does not generalise to chipsets outside the
auspices of Intel and, while this may be acceptable for server or more powerful
mobile device, it does not reconcile attesting ARM-based SoCs, which are pre-
dominant among constrained devices. Ideally, both end-points should undergo
trust verification to provide this assurance, i.e. each node remotely attesting the
other prior to further communications involving sensitive data, which ought
to be performed without trusting intermediate untrusted components, such as
either REE.

To our knowledge, this remains unaddressed with remote TEEs. An imme-
diate solution is to perform remote attestation twice: one per party, which may
include EPID for Intel SGX, or a TPM-based protocol for past TEEs with TPMs,
e.g. Chen et al. [71]. However, the complexity overhead of two protocol exe-
cutions is excessive in terms of potential network and computational overhead.
This is supported by previously discussed existing literature [74], [78], [79] that
propose secure and mutually trusted channels in a single run. Another drawback
of executing multiple attestation protocols is that it implies the maintenance of a
suite of protocols for providing the necessary attestation mechanism used by all
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FIGURE 4.1: High-level mutual attestation of two TEE-enabled
devices.

possible communicating devices. To this end, we develop a generic and flexible
TEE-based mutual attestation mechanism focussing on benefitting embedded
sensing devices. In the coming sections, we begin formalising a single protocol
that provides intercommunication with bi-directional trust assurances, while
accounting for potential interoperability issues.

4.4 Protocol Design

This section outlines the threat model, security goals and assumptions we operate
from for designing a protocol for providing secure TEE-to-TEE intercommunica-
tion using mutual attestation.

4.4.1 Threat Model

We refer to the high-level architecture in Figure 4.1 in our discussion. At a
high-level, our threat model assumes any component between the TEEs to be
untrusted, including the medium across which data is transmitted, such as the
Internet, a short-range (e.g. Bluetooth), local area, or peer-to-peer network, and
the untrusted worlds on both device. More specifically, on the end-devices, we
consider user- and kernel-level adversaries aiming to observe or modify protocol
message exchanges within the untrusted worlds before they are received by
either TEE. This includes, for example, protocol session keys; attestation values;
and application-specific data, e.g. credentials and sensor measurements, held by
either TEE.

From a network perspective, we consider a Dolev-Yao type adversary operat-
ing over any network medium over which the protocol messages are exchanged,
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such as Bluetooth, Wi-Fi (802.11), a low-power wide-area network (LPWAN), or
otherwise. Specifically, we aim to defend against an adversary that attempts to:

• Observe and modify arbitrary protocol messages transmitted between each
end-device.

• Masquerade as either end-point, including the use of man-in-the-middle
attacks, the transmission of previously observed messages (replay attacks),
and the attempted generation of fraudulent protocol messages.

• Use previously compromised protocol session keys in order to compromise
subsequent sessions.

• Deny or repudiate that a protocol instance had occurred.

In this work, we do not consider on-device denial-of-service (DoS) that drop
messages within the untrusted world before they reach either TEE. As discussed
by Sabt et al. [156], TEEs rely implicitly upon co-operation between the untrusted
and trusted world, and adversaries that prevent this co-operation, say, by im-
peding world switches, would subsequently impede the protocol generally. This
on-going, TEE-wide challenge is considered out-of-scope in this work. Addition-
ally, the TEE and its applications are considered to be trusted, and should satisfy
the GlobalPlatform TEE Protection Profile [48] discussed previously in Chapter 2.
As such, we do not consider threats generally considered outside the protection
scope of TEEs, such as advanced physical attacks requiring substantial time
and expertise, e.g. laser fault injections; supply chain attacks; and pre-existing,
unintentional programming and logic errors within the TEE or TA code that give
rise to software vulnerabilities [48], [156]. A description of the GlobalPlatform
TEE Protection Profile was given in Section 2.4.7, while the protection scope of
TEEs generally was also analysed in Sections 2.5.1, 2.5.2 and 2.6 of Chapter 2. We
revisit the limitations of this work later in Section 4.7.3.

4.4.2 Security Goals

To scope this work and ground future discussion, we identify a series of goals for
establishing trusted channels between remote TAs, which serve as a minimum,
but not exhaustive, baseline that we aim to support:

1. Mutual Key Establishment: A shared secret key is established for commu-
nication between the two entities.

2. Mutual Entity Authentication: Each entity shall authenticate the other’s
identity in order to counter masquerading.
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3. Mutual Non-Repudiation: Neither entity may deny that a protocol in-
stance had occurred.

4. Trust Assurance: Entities shall be able to remotely attest the application
and platform integrity of the other.

5. Mutual Trust Verification: Both entities shall successfully attest the state
of the other within the protocol and before creation of the secure channel.

6. Freshness: Session keys and their derivatives must be fresh in order to
counter replay attacks.

7. Forward Secrecy: The compromise of a particular session key should not
affect past or subsequent protocol runs.

8. Denial of Service (DoS) Prevention: Resource allocation shall be min-
imised at both end-points to prevent DoS conditions from arising.

In this work, the following goals are also established from a functional per-
spective:

1. Avoid additional trust hardware: To maximise compatibility with con-
strained embedded devices, the protocol shall avoid mandating additional
security hardware, namely SEs or discrete TPMs.

2. TEE agnosticism: The protocol shall be generic and avoid manufacturing
and verification processes specific to any particular TEE.

3. Session resumption: The ability to resume a session securely without re-
conducting the protocol.

4.4.3 Trust Measurement and Attestation – Operational Perspective

We now describe a basic approach for attesting TAs and platform configurations
using a TEE. As discussed previously, TEEs and TPMs typically follow the
quoting abstraction in which platform integrity information is measured and
signed by a trusted entity for assuring a verifier of the platform’s trustworthiness.
This takes the form of PCR values with TPMs, but may take the form of an
application binary hash (as used in Intel SGX), or both. In SGX, a separate trusted
application – the quoting enclave – functions as a verifier and signatory of the
requested enclave’s state. This comprises a signed hash of the enclave’s code
and related data, e.g. version number. The quote, which is signed under a
CPU-accessible key provisioned in single-write ROM, is transmitted back to the
challenger for verification. The challenger then uses the Intel Attestation Service
(IAS) for verifying the authenticity of the signed quote, i.e. that it was signed
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using a genuine Intel SGX chipset. The IAS maintains a repository of public keys
to achieve this, and functions as a trusted third party.

This abstraction is not specified in the GlobalPlatform specifications, but such
an architecture can be adopted generically for the purposes of this work. This
does not necessitate hardware-bound key-pairs in each device: GP TEEs are capa-
ble of hosting data persistently in secure storage, whether as part of the TEE OS
itself, as a separate ‘keymaster’ TA, simliar to the Android’s TEE-based Keystore1.
It could also be a Secure Element (SE) for hardware tamper-resistance using
the GlobalPlatform TEE Secure Element API [49]. The exact implementation
ultimately depends on the OEM and its security, cost and physical space require-
ments. Nevertheless, the primary requirement is that, akin to a TPM’s Attestation
Identity Key (AIK), it is certified by a trusted third party to the verification au-
thority, which may even be the OEM itself, and that its private components are
never revealed outside the TEEs.

Maintaining the security and trust of a TEE and its TAs differs according
to implementation. OP-TEE verifies a TA’s binary signature when it is loaded
into memory such that only verified TAs are launched; TAs are signed by the
developer and provisioned into the TEE before deployment. The fact that the
device was booted and the TA was launched implies some notion of trust, but
this does not extend to convincing a verifier, V , that the target TA, or even TEE
OS, is running the expected version. This could be a consequence of patch de-
livery failure, which is seen as a major issue affecting IoT security generally, as
discussed in Chapter 1. For stronger assurances, proprietary TEE remote attesta-
tion mechanisms have emerged, but the specifics remain largely undocumented
publicly. Samsung KNOX is known to transmit boot measurements as part of its
attestation response, which is signed by a device-unique attestation key certified
by Samsung [197]. Attestations that generate both TA and platform measure-
ments, i.e. a static binary hash and boot measurements in PCR-like values, could
be used to provide V with heightened evidence of platform integrity.

In this vein, we suggest the use of a separate TEE OS component – a Trusted
Measurer (TM ) verified in the TEE’s secure boot sequence – to measure and
produce quotes based on the known state information of the platform and target
TA. This includes the TA’s binary hash, any known personalisation data, UUID
(Universally Unique IDentifier), and version number. TM subsequently signs
the resulting quote using the private portion of a certified attestation key-pair
provisioned by the operator before deployment. This could be in software using
native TEE secure storage or, at the cost of additional hardware and Functional

1Android Open Source Project – Hardware-backed Keystore: https://source.android.
com/security/keystore/

https://source.android.com/security/keystore/
https://source.android.com/security/keystore/
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FIGURE 4.2: Generic TEE remote attestation architecture.

Requirement 1, within an SE accessible only to the TEE to provide greater hard-
ware tamper resistance, as suggested by the GP specifications [49]. (We note
that TEE-based TPM implementations – also known as firmware-based TPMs,
or fTPMs, as described by Raj et al. [198] – could serve as a helpful reference to
an OEM in implementing a potential TM candidate. Intel SGX already contains
a TM in the form of the quoting enclave, or QE). Lastly, V verifies the received
quote: its signature and the contained trust measurements. The OEM must be
aware that, if one of the communicating TEEs uses Intel SGX, it is difficult to avoid
using its remote attestation infrastructure for the quote verification portion [72].
Figure 4.2 depicts a generic attestation process reflected in this discussion and
described as follows:

1. An Attestation Authority, AA generates and certifies a device-specific at-
testation key-pair, AK, using a desired public-key algorithm, e.g. 3072-bit
RSA or 512-bit ECDSA, which is securely stored in the TEE and accessible
to TM .

2. The OEM procures and provisions TAs into the TEE from a trusted devel-
oper.

3. The initial expected TA state and platform configuration is registered with
AA.
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4. AA issues a remote attestation request to the target TA to produce a quote
representing its operating state. This may, for example, be prior to accessing
any restricted assets, or before the transfer of sensitive data that informs
some other activity, e.g. sensing data.

5. TM creates the attestation quote, Q, comprising boot measurements and
the hashed TA binary currently in use, and signs it with the private portion
of AK provisioned into TEE secure storage.

6. TM returns the signed Q to the TA, which transmits it to V over a secure
channel.

7. AA verifies the signature of Q using the public component of AK. This
step also includes a look-up with a trusted verification service that inspects
that the contents of Q, i.e. TA in use and boot measurements, conform to
expected parameters registered a priori.

4.5 Proposed Protocols

This section now presents the proposed protocols for creating a secure and
trusted channel between remotely located TAs. Based on the goals established in
Section 4.4, we present two protocols under two differing deployment scenarios:
bi-directional trust, in which both communicating devices contain TEEs, and uni-
directional trust, in which only one device contains a TEE. The latter scenario is
likely to arise for legacy devices that existed before the recent developments in
TEEs, but still wish to communicate in a secure and trusted with a remote entity
that does host a TEE. In this case, the trust guarantees in Section 4.4 apply only to
the TEE-enabled device. These two protocols, which are described and analysed
in detail throughout this section, are presented and listed as the Bi-directional
Trust Protocol (BTP) in Protocol 1 and the Uni-directional Trust Protocol (UTP)
in Protocol 2. In design, BTP is influenced by Greveler et al. [74] and Akram et
al. [78] protocols that establish mutually trusted channels using TPMs over a
Diffie-Hellman based key exchange. Next, this section discusses the pre- and
post-protocol procedures, provides a high-level descriptive analysis in Section
4.5.3, and discusses formal symbolic verification in Section 4.5.4.

4.5.1 Setup Assumptions

For BTP, it is assumed that each TA on the remotely located devices possess means
for verifying attestation quotes received from the other, as stated in Section 4.4.3.
Moreover, each TEE also contains TM for generating and signing quotes from
application and platform state data upon request. For UTP, only the TEE-enabled
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Protocol 1 Proposed Bi-directional Trust Protocol (BTP)

1: TASD → TARE : IDSD || IDRE || nSD || gSD || ARRE || Scookie
Scookie = H(gSD || nSD || IDSD || IDRE)

2: TARE → TASD : IDRE || IDSD || nRE || gRE ||
[
σTARE

(XTARE
) ||

σTARE
(VTARE

)
]KE

KMAC
|| ARSD

XTARE
= H(IDSD || IDRE || gRE || gSD || nRE || nSD)

VTARE
= QTARE

|| nRE || nSD
3: TASD → TARE : [σTASD

(XTASD
) || σTASD

(VTASD
)]KE
KMAC

|| Scookie
XTASD

= H(IDSD || IDRE || gRE || gSD || nRE || nSD)
VTASD

= QTASD
|| nRE || nSD

Protocol 2 Proposed Uni-directional Trust Protocol (UTP)

1: UASD → TARE : IDSD || IDRE || nSD || gSD || ARRE || Scookie
Scookie = H(gSD || nSD || IDSD || IDRE)

2: TARE → UASD : IDRE || IDSD || nRE || gRE ||
[
σTARE

(XTARE
) ||

σTARE
(VTARE

)
]KE

KMAC

XTARE
= H(IDSD || IDRE || gRE || gSD || nRE || nSD)

VTARE
= QTARE

|| nRE || nSD
3: UASD → TARE : [σUASD

(XUASD
)]KE
KMAC

|| Scookie
XUASD

= H(IDSD || IDRE || gRE || gSD || nRE || nSD)

end-point must respond to attestation requests and provide quotes. It is also
assumed that the TEE has a secure, preferably hardware-based, means of key
generation and derivation, and random number generation.

4.5.2 Post-protocol

Trusted sensing necessitates secure session resumption to alleviate the overhead
of re-executing the protocol. This is useful for constrained devices that transmit
sensitive data frequently but not necessarily constantly, such as a home monitor-
ing system reporting occupancy data during the day. Resumption is not cost-free,
however; the longer a session exists, the greater the impact of one particular com-
promised session. As such, sessions should be re-established at regular intervals
to minimise this risk, which ought to constitute part of the service provider’s risk
model.

4.5.3 Protocol Analysis

Analyses of the protocols are now provided, comprising a message-by-message
descriptive analysis and the use of formal symbolic verification with Scyther [163].
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TABLE 4.1: Protocol notation.

Notation Description

SD Sensing device.
RE Remote entity.
TAX TEE trusted application on device X .
UAX Untrusted application on device X .
nX Random number (nonce) generated by X .
H(D) A secure one-way hash function, H , applied to D.
X → Y Message transmission from X to Y .
IDX Identity of X.
A || B Concatenation of A and B.
gX Diffie-Hellman exponentiation of X .
ARX Attestation request on target entity X .
QX Quote from TEE X .
σ(A)PK Signature of A with private-public key-pair (K,P ).

[D]Ke
KMAC

Message D is encrypted using session encryption
and MAC keys Ke and KMAC respectively, both
generated during the protocol.

Message Description

1. The sensing device, which is trusted in BTP (TASD) or untrusted in UTP
(UASD), computes and transmits its Diffie-Hellman (DH) exponential gSD,
along with an attestation request ARRE to instruct the remote entity to
provide its quote. Scookie, comprising a hash of the nonce, IDs and DH
exponentiation may be used as a session resumption cookie, a la Akram et
al. [78]. This satisfies the session resumption functional requirement (F3) in
Section 4.4.

2. Next, TARE transmits its DH exponentiation, gRE ; nonce, nRE ; and sig-
natures of both DH exponentiations and its quote, QTARE

. The quote and
both DH exponentiations (now known by TARE at this point), IDs and
nonces are signed using its (certified) device-specific attestation key-pair,
and then encrypted under an encrypt-then-MAC construction under keys
derived from the shared session key. The transmission of this message
satisfies requirement S1 (mutual key establishment). For BTP, TARE now
requests an attestation from the sensing device’s TA, TASD. By design,
mutual transmission of attestation requests is not used in UTP.

3. Finally, the sensing device computes its shared DH session key. It then
acknowledges with the nonces, DH exponentiations and IDs, which it signs
using its certified device-specific attestation key-pair and subsequently
encrypted under encrypt-then-MAC. SD also transmits the session cookie
for resumption. This satisfies S2 (mutual entity authentication), S3 (mutual
non-repudiation), S6 (freshness) and S7 (forward secrecy, by generation of
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ephemeral DH key). Lastly, the sensing device responds with its respective
quote, thus satisfying S5 (bi-directional trust). For UTP, no responding quote
is generated and σTASD

(VTASD
) is not transmitted. S8 (DoS prevention)

is largely ensured by avoiding either party to perform overly-demanding
operations: two signatures, a single attestation, DH exponentiation, nonce
generation and shared-key generation are required by each party. Evi-
dently, this is biased in favour of SD during UTP, which does not have to
participate in producing remote attestation responses; the service provider
should be aware of this when using UTP. A performance evaluation of the
protocols is presented later for an indication regarding this in Section 4.7.

4.5.4 Formal Verification

We make use of automated protocol verification to evaluate the correctness of
the proposed protocols using the Scyther tool by Cremers [163]. Verification
tools are motivated by the difficulty of verifying protocol correctness manually,
particularly those involving a many messages and communicating parties [199].
In the following sub-sections, symbolic protocol analysis is briefly introduced
before discussing the analysis of the proposed protocols using Scyther. Following
this, we stress the limitations of symbolic analysis tools that arise predominantly
when implementing the protocols in practice. We do not intended to provide a
comprehensive review of symbolic analysis – for this, the reader is referred to
work by Cremers [163], Lafourcade and Puys [199], Scott [200], and Blanchet [201],
[202] – but, rather, we aim to identify its salient features and limitations.

Symbolic Analysis

Tools such as Scyther [163], Tamarin [203], AVISPA [204], CasperFDR [189] and
ProVerif [205] operate in the symbolic model in which protocols comprise mes-
sages containing symbols that represent black-box cryptographic primitives [199].
These primitives – hash functions, asymmetric and symmetric encryption, digital
signature schemes, and so on – are treated as abstract entities with certain prop-
erties without being concerned about their implementation. For example, one
may model symmetric encryption in Tamarin by defining its functionality with
decryption (sdec) and encryption (senc) functions as such: sdec(senc(m,
k), k) = m, where m is message and k is a shared secret key, without defining
how it is actually realised, say, using AES [200]. Scyther provides a set of built-in
definitions of common cryptographic primitives, such as hash functions, digital
signatures, and symmetric encryption; an extensive list is found in [163].
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This leads to the important assumption that these primitives are assumed
to exhibit perfect cryptography; that is, cryptographic operations can only be per-
formed with knowledge of the required key [200]. This assumption is revisited
later when discussing the limitations of verification tools. This assumption is
used in conjunction with a Dolev-Yao [206] adversary where, in short, the at-
tacker is assumed to control the network with the ability to eavesdrop, forge,
replay, modify and drop transmitted protocol messages. Symbolic verification
tools operate by exploring whether the desired security properties hold against
all possible behaviours of this adversary [201], with the tools providing feature
differences relating to execution time, memory consumption, automation of de-
sired security properties, expressiveness, and termination guarantees. A detailed
comparison of symbolic verification tools is provided by Lafourcade and Puys
[199] and Cremers et al. [207].

Automated Symbolic Analysis of the Proposed Protocols

The Scyther verification tool by Cremers [163] is employed to verify the correct-
ness of both protocols. A protocol is first specified using Scyther’s high-level
Security Protocol Description Language (SPDL) that defines the communicating
parties (roles); the messages represented in terms of built-in primitive types, such
as nonces, hash functions, keys and signatures, and user-defined types; and
the desired security properties to test (claims). After the definition of the roles,
protocol messages and claims, Scyther analyses whether the specification holds
against all possible behaviours of a Dolev-Yao adversary, known as traces [208],
under the perfect cryptography assumption. Rather than formally specifying
security properties as lemmata, as required in some tools like Tamarin [203]
and ProVerif [201], Scyther supports a number of built-in security properties
with which to form claims, namely: aliveness, secrecy, non-injective agreement,
non-injective synchronisation, and reachability. These properties are formalised by
Lowe [209], Cremers et al. [210], Abadi and Blanchet [211], and Cremers [163],
and are described below.

Lowe [209] defines aliveness as the weakest form of authentication notion
that guarantees that the communicating party has previously participated in the
protocol: “We say that a protocol guarantees to an initiator A aliveness of another agent
B if, whenever A (acting as initiator) completes a run of the protocol, apparently with
responder B, then B has previously been running the protocol” [209]. A protocol can
fail the aliveness property in a mirror attack whereby an adversary simply reflects
messages back to the initiator without actually participating in the protocol.

Non-injective agreement is a stronger form of authentication provided by
Lowe [209], where the communicating entities agree on a set of data items,
such as keys and other variables: “We say that a protocol guarantees to an initiator A
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non-injective agreement with a responder B on a set of data items ds (where ds is a set of
free variables appearing in the protocol description) iff, whenever A (acting as initiator)
completes a run of the protocol, apparently with responder B, then B has previously been
running the protocol, apparently with A, and B was acting as responder in his run, and
the two agents agreed on the data values corresponding to all the variables in ds” [209].

Non-injective synchronisation is introduced by Cremers et al. [210] to address
the issue of replay attacks. Informally, it states that a message received by the
communicating parties is one unique to that protocol; the use of nonces is typically
employed by security protocols to realise this property. The definition states:

“Initiator I considers a protocol injectively synchronising if the protocol synchronises and
each run of I corresponds to a unique run with [responder] R” [210]. This relies on the
following definition of synchronisation: “Initiator I considers a protocol synchronising
whenever I as initiator completes a run of the protocol with responder R, then R as
responder has been running the protocol with I. Moreover, all messages are received
exactly as they were sent, in the order described by protocol” [210].

Secrecy is the property of preserving the confidentiality of secret information,
e.g. session keys, during message exchanges. It is defined as: “Protocol P pre-
serves the secrecy of data M if P never publishes M, or anything that would permit the
computation of M, even in interaction with an adversary Q. Equivalently, a protocol P
preserves the secrecy of data M if P in parallel with an adversary Q will never output M
on a public channel” [211].

Reachability is the simplest property tested by Scyther that determines whether
there exists some trace involving the tested entity (“It is true iff there exists a trace
in which this claim occurs” [163]). This is useful in verifying whether at least one
message is transmitted to a given party in order to detect specification errors.

In Scyther, a claim holds if no traces are found that violates its stated security
property. We note that Scyther lacks some features provided by other tools, such
as its inability to model more advanced cryptographic primitives, like blind signa-
tures, and in defining custom security properties and adversaries. However, it is
shown to outperform most other tools with respect to run-time performance [199],
[207], and has been used in verifying IKEv1 and IKEv2 [212], and the ISO/IEC
9798 [213] and ISO/IEC 11770 protocol families [214]. We analysed all protocols
testing for the secrecy of quotes from both parties, e.g. (Secret, qre); alive-
ness (Alive); entity authentication, i.e. non-injective agreement (Niagree) and
non-injective synchronisation (Nisynch); session key secrecy (SKR, K), which
is a synonym of the Secrecy claim for keys; and the reachability of all communi-
cating entities (TARE/TASD/UASD, Reachable). The full Scyther specification
scripts for the bi-directional (BTP) and uni-directional (UTP) protocols can be
found in Appendices A.1 and A.2 respectively. Scyther found no attacks on either
protocol; however, this must be considered alongside its limitations, which are
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discussed below.

Limitations of Protocol Verification Tools

At this point, the limitations of symbolic verification tools must be stressed.
Notably, the ‘perfect cryptography’ assumption does not readily translate into
reality: cryptographic primitives are regularly subverted by weaknesses in their
implementation, whether due to programming errors, side-channels and other
vulnerabilities outside the scope of such tools [200], [205]. Moreover, secure key
management, secure sources of randomness, and adequate parameter selection
for such primitives are not covered. We discuss some of these limitations below:

• Cryptographic primitive and parameter selection. The use of ‘perfect’ primi-
tives abstracts from the importance of using secure implementations and
associated parameters. For example, the use of insufficiently large key sizes
is not covered, nor is the improper use of cryptographic primitives, such
as initialisation vector (IV) reuse in AES; insecure modes of operation, e.g.
AES in ECB mode; and the selection of weaker primitives, e.g. DES for
symmetric encryption.

• Protocol implementation errors. Even assuming the accurate specification of a
particular protocol, verification tools do not cover its actual implementation.
For example, programming errors may improperly verify the validity of
nonces, hence giving rise to replay attacks, or incorrectly verifying digi-
tal signatures and message authentication codes, thus enabling integrity
attacks.

• Side-channel and physical attacks. Verification tools are also unable to model
side-channels, such as power analysis and timing attacks against crypto-
graphic primitives [205]. This is also applicable to physical attacks, e.g. bus
probing and fault analysis, conducted by an attacker on the device.

• Secure randomness. Protocol verification tools do not consider the imple-
mentation of secure sources of randomness with which to generate unpre-
dictable numbers used in security protocols, such as nonces and IVs; this is
simply assumed under the perfect cryptography assumption.

• Software security. Verification tools do not model system-level security
controls, such as protection rings, sandboxing measures, or, indeed, the use
of TEEs or SEs to protect protocol material against on-device adversaries.

• Key management challenges. Verification tools assume the existence of secure
key management practices; for example, the secure generation, distribution
and provisioning of keys, and their revocation. Consequently, the tools
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do not cover the attempted use of revoked keys, insider or supply chain
attacks that lead to the use of stolen keys, and the storage of keys at rest on
insecure media.

For these reasons, caution is urged in the interpretation when a verification
tool states that no attacks were discovered on a given protocol. However, such
tools are useful in detecting and remedying well-known flaws in security proto-
cols, such as replay attacks, and gaining some assurances regarding the secrecy
of variables as they are exchanged in the protocol at a high level [200].

4.6 Implementation

Both BTP and UTP were implemented using OP-TEE [160] – an open-source,
GP-compliant TEE based on ARM TrustZone, which was utilised and described
in Chapter 3. OP-TEE executes two execution environments simultaneously: the
untrusted world OP-TEE Client, containing Debian (Linux) that implements the
GP TEE Client API [85]; and OP-TEE OS, running the TEE kernel that implements
the GP TEE Internal API [86]. Two applications were developed that executed in
the trusted and untrusted worlds independently, with communications mediated
by the OP-TEE secure monitor. The reader is referred back to Section 2.4.7 and
Figure 2.14 in Chapter 2 for a description of the GP TEE.

Both protocols were implemented using the cryptographic operations defined
in the GP Internal API, all of which occurred in the trusted world application.
The untrusted world application was used for handling TCP/IP sockets and
transferring protocol messages into the corresponding TA. In OP-TEE, crypto-
graphic operations are implemented by the LibTomCrypt2 library and, where
available, ARM Cryptography Extensions for providing instruction-level AES
and SHA [215]. Based on the NIST key size recommendations [216], we used
2048-bit Diffie-Hellman, 128-bit AES in CBC mode, and SHA-256 (including for
HMACs). Also based on those recommendations, we used the Elliptic Curve
Digital Signature Algorithm (ECDSA) for quote signing and verification using
the NIST secp256r1 curve. At present, only the NIST curves are specified in
the GlobalPlatform TEE Internal API specifications [86], and ECC support in
general is not mandated for GlobalPlatform compliance. Each TA was preloaded
with the known signature of the remote TA and 256-bit ECDSA public key (also
secp256r1). We emulated a software TM as another TA that, upon request,
returned an ECDSA-signed hash of the binary and mock platform data, which
constituted the quote. In practice, as per Section 4.4.3, this key would be certified
and provisioned by the developer, and the TM would, ideally, be verified as part
of the device’s authenticated boot process.

2LibTomCrypt: https://github.com/libtom/libtomcrypt

https://github.com/libtom/libtomcrypt
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FIGURE 4.3: High-level implementation information flow for BTP.

We used two HiKey LeMaker ARM development boards, hosting an HiSilicon
Kirin 620 SoC with an eight-core ARM Cortex-A53 processor (1.2GHz), 2GB
DDR3 RAM and TrustZone extensions. Such specifications are typical of modern
SBCs; the Raspberry Pi 3, for example, also uses an ARM Cortex-A53 with 1GB
RAM. Notably, our board is supported and reasonably documented by the OP-
TEE project; however, it has not been CC certified under the GlobalPlatform
TEE PP. We are currently unaware of any publicly-available, CC-certified TEE
platforms with open-access for the installation and testing of TAs. The protocol
was implemented in C – the only development language supported fully by
OP-TEE at the time of writing (April 2018) – and cross-compiled for ARM 64-bit
platforms using the GNU C Compiler (GCC) with the default optimisation flags
(-O0). World context switches were kept to two per message for setting and
retrieving messages into and from the TA respectively. This is illustrated in
Figure 4.3.

4.7 Evaluation

We measured 1,000 runs of the BTP and UTP protocols, which were benchmarked
against the OpenSSL 1.0.1 implementation of TLS v1.2 and SSH (OpenSSH 6.7) ex-
ecuting in the untrusted world. For TLS, the modes DHE-RSA-AES128-SHA256,
DHE-DSS-AES128-SHA256 and ECDHE-ECDSA-AES128-SHA256 were used.
This selection stems from the similarities with our proposal: the use of ephemeral
Diffie-Hellman (DHE), 256-bit ECDSA and 128-bit AES, in addition to RSA
and DSS signatures for comparison. These were measured using openssl

s_client. For SSH, 128-bit AES in CBC mode was used with SHA-256 HMACs,
as per our implementation. This was tested with RSA-, ECDSA- and DSA-based
key pairs; the ssh utility was used with default settings except for specifying AES
and HMAC modes, and the desired key. The Diffie-Hellman group sizes were set
at 2048 bits (with pre-generated moduli) in accordance with our implementation,
and 256-bit ECDSA for the relevant SSH and TLS modes. 3072-bit RSA was also
used, in line with the NIST recommendations [216]. 3072-bit DSS was used for
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TABLE 4.2: Mean client and server round-trip wall-clock times (in
milliseconds; S.D. in brackets).

BTP UTP
Message Client (TASD) Server (TARE) Round-trip Client (UASD) Server (TARE) Round-trip

M1: TA/UASD → TARE 302.7 (4.1) 21.5 (2.9) 347.1 (3.5) 305.9 (2.5) 20.8 (3.0) 350.2 (2.6)
M2: TARE → TA/UASD 346.9 (6.6) 682.6 (6.9) 1192.0 (7.2) 350.3 (6.1) 689.4 (7.3) 1189.2 (10.3)
M3: TA/UASD → TARE 61.6 (4.8) 39.7 (4.1) 117.2 (4.6) 39.2 (3.9) 26.7 (3.1) 73.8 (3.4)

TABLE 4.3: Full protocol mean wall-clock times in milliseconds.

Proposal TLS SSH

BTP UTP DHE+RSA DHE+DSS ECDHE+ECDSA RSA DSA ECDSA
1692.3 (11.0) 1618.2 (9.6) 410.5 (3.9) 374.3 (4.1) 102.5 (2.2) 535.1 (13.6) 446.1 (11.8) 453.8 (15.0)

TLS, but only 1024-bit DSA was used with OpenSSH due to its deprecation; how-
ever, we still include it for comparison purposes. The protocols were measured
using wall-clock time via the time UNIX utility with microsecond precision.
This was assisted by a shell script in the untrusted world for initialising the target
IP address and port number, and for result logging.

Message-specific times were measured for BTP and UTP using the <time.h>
C library provided by OP-TEE. For these, the mean wall-clock time was calculated
from 1,000 measurements per message. This includes client and server times
to generate and verify each message, and the round-trip time to account for
network latency – comprising message generation, transmission, verification and
acknowledgement. For all experiments, the boards were connected over IEEE
802.3 Ethernet to a router with no other attached devices in order to minimise
network overhead. The boards were configured in a client-server architecture:
one acting as TARE and the other as TASD. Both boards were also connected
to a central laptop (Lenovo T460s) using UART-to-USB for debugging and error
identification. Figure 4.4 depicts our test-bed environment.

We recognise that using Ethernet over a router is only one particular network
medium. A multitude of protocols could be used in a given IoT deployment,
such as IEEE 802.15.4-based mediums, e.g. ZigBee3 and Thread4; Z-Wave5,
which is common in home automation systems operating on the 800-900MHz
spectrum; cellular networks, e.g. UMTS/HSPA (3G) and LTE (4G); Low-Power
Wide-Areas Network (LPWAN) protocols with substantially reduced bit rates (up
to 50kbit/s), e.g. LoRa6 and SigFox7; IEEE 802.11 Wi-Fi networks; and Bluetooth,
including Bluetooth LE. Indeed, given their relatively early inception, some of
these protocols remain direct technological competitors, such as LoRa and SigFox

3ZigBee Alliance: https://www.zigbee.org
4Thread: https://www.threadgroup.org
5Z-Wave: https://www.z-wave.com
6LoRa: https://www.lora-alliance.org/
7SigFox: https://www.sigfox.com/en

https://www.zigbee.org
https://www.threadgroup.org
https://www.z-wave.com
https://www.lora-alliance.org/
https://www.sigfox.com/en
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FIGURE 4.4: Test-bed environment: HiKey boards (circled) reach-
able over Ethernet via a LAN router (blue), and connected using

UART-to-USB (yellow) to a Lenovo T460s for debugging.

in the LPWAN space. In light of this, we advise that our presented data below
should be considered a baseline measurement.

4.7.1 Performance Comparison

The results are presented in Figure 4.5 (comparing BTP and UTP with TLS
and SSL), Table 4.2 (BTP and UTP message-specific times), and Table 4.3 (total
protocol round-trip time). As shown, our proposal performs consistently at
approximately 1.7 seconds to execute in its entirety (round-trip) – yielding a
∼4x overheard versus TLS with ephemeral key Diffie-Hellman and RSA. This
comprises the time to open/close TCP/IP sockets, receive and parse messages
from the client/server, invoking the protocol TA functions and world context
switches. This is in addition to performing all of the cryptographic algorithms
including 2048-bit Diffie-Hellman key-pair generation, HMAC and signature
generation and verification, including for quotes.

Some overhead was expected due to the results from related work: [78],
described previously for mutual attestation of TPM platforms, also exhibited
approximately between 3-5x overhead versus SSL and SSH on a Raspberry Pi B
with software-based TPMs. Several attributes in particular were identified that
we believe contributed to the exhibited overhead:
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FIGURE 4.5: Relative protocol performance.

• Our test-bed implementation could benefit from optimisations typically
found in widely-used protocol implementations, such as OpenSSH and
OpenSSL, which have undergone years of peer-reviewed refinement from
the C and X86-64 Assembly communities. An obvious potential optimisa-
tion is that the test-bed is single-threaded; OP-TEE does not support intra-
TA multi-threading at the time of writing. On a supported TEE, one may
consider parallelising the generation of σTARE

(XTARE
) and σTARE

(VTARE
),

the latter of which includes quote generation, for message one (and for
TASD in message three), rather than executing each operation sequen-
tially. This could also consider parallelising the derived DH session key, i.e.
(gSD)RE , alongside VTASD/RE

and XTASD/RE
.

• The penalty imposed by four and two world context switches between OP-
TEE and Debian OS for retrieving and verifying messages on TASD and
TARE respectively (see Figure 4.3). This also includes four context switches
per device for the instantiation and destruction of each TA, preceding and
following the protocol. Another factor is the time to allocate, initialise,
execute and free dynamically-allocated, GlobalPlatform-specific objects
and operations. The reader is referred to the GlobalPlatform Internal API
specification [86] for full details regarding the preparation and structure of
specific primitives.

Related to this, each GlobalPlatform Internal API call is also several steps
removed from the underlying implementation provided by LibTomCrypt
in the OP-TEE call stack, shown in Listing 3. Beginning with a TA func-
tion in user mode, the GP Internal API functions, i.e. TEE_*() such as
TEE_CipherInit(), are made available in the static library libutee.a,
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Listing 3 OP-TEE GlobalPlatform Internal API call stack [217].

1: ta_function() {Arbitrary TA function – User space}
2: → TEE_*() {Provided in libutee.a}
3: → utee_*() {System call interface}
4: → tee_svc_*() {Kernel space}
5: → crypto_*() {libtomcrypt.a and crypto.c}
6: /* LibTomCrypt */ {libtomcrypt.a; algorithm implementations}

which principally performs parameter validation and error reporting. Next,
utee_*() is invoked that transitions to the appropriate service in TEE ker-
nel space using ARM supervisor calls via SVC instructions. tee_svc*_()
is used to copy memory buffers between TEE user and kernel space, and to
invoke a private abstraction layer, the internal Crypto API (crypto_*()),
which implements the actual algorithms. The Crypto API uses implementa-
tions from LibTomCrypt, compiled as a static library libtomcrypt.a, and
hardware-accelerated versions for supported platforms. (The HiKey boards
used in the test-bed implementation provide hardware-accelerated AES
and SHA-256 using the ARMv8-A Cryptographic Extensions instructions).
While one expects a modern compiler to mitigate much of the incurred over-
head, cryptographic GlobalPlatform functions are significantly abstracted
from the actual implementations provided by LibTomCrypt.

• The difference in cryptographic implementations between SSH and TLS,
both of which used OpenSSL, and LibTomCrypt used by OP-TEE. Expect-
edly, a significant portion of the protocol time occurs during Diffie-Helmann
operations. This occurs once on the client-side in message one and three
times in message two: twice server-side – once to compute gRE and the
other to compute the derived DH session key, i.e. (gSD)RE – and another on
the client-side to compute its shared value after receiving gRE , i.e. (gRE)SD.
Surprisingly, little work exists that systematically benchmarks security
protocols and cryptographic primitives across ARM SoCs. While bench-
marking cryptographic suites is outside the scope of this paper, a limited
selection of work indicates that “performance varies greatly” [218] between
cryptographic libraries and, indeed, with alternative compilers and com-
piler flags [219], [220].

Notwithstanding potential optimisations, the protocol executed in a round-
trip time of 1692ms and 1612ms for BTP and UTP respectively. We stress that
these timings should be considered a baseline measurement. As stated previously,
we are currently unaware of any study that accurately benchmarks OP-TEE,
or any other GlobalPlatform-compliant OS using ARM TrustZone, for reliably
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identifying bottlenecks and discerning the cause of timing overheads imposed
by TEEs. We see this as a valuable contribution in itself for future research.

4.7.2 Related Work Comparison

A criteria comparison is made with related protocols in Table 4.4. This table
is an extension of the security criteria presented by Akram et al. in [77] and
[78] in order to reflect the goals specified in Section 4.4. The table includes well-
known transport-layer protocols (TLS [221] and SSH [222]) and their variants
(DTLS [223]), and smart card-based protocols (the Markantonakis-Mayes [224],
GP SCP81 [225] and Sirett-Mayes [226] protocols). The rationale behind incorpo-
rating smart cards is its similar goals relating to the communication with sensitive
applications aboard a constrained device. Moreover, the smart card industry is
similarly tightly controlled by card issuers and manufacturers and, like TEEs,
must adhere to high standards established by Common Criteria. We also include
other key exchange (Station-to-Station [227], Aziz-Diffie [228], ASPeCT [229] and
Just Fast Keying or JFK [230]) and trusted channel protocols (Trusted TLS or T2LS
by Gasmi et al. [79], Akram et al. (AMMBSC) [78], Greveler et al. (GJL) [74],
Enhanced Privacy ID with SGX [169] and P-STCP [77]).

As shown in Table 4.4, no protocol satisfies the goals motivating this work
regarding TEE mutual attestation. Some are closely related, such as AMMBSC
[78], SGX+EPID [169] and GJL [74]. SGX+EPID is not considered due to the
tightly-controlled nature in which Intel provisions PSKs during manufacturing
and performs attestation (described in Section 4.4.3), which ultimately ties OEMs
into a trusted relationship with Intel. Naturally, AMMBSC is avoided for its
reliance on TPM, the issues of which were discussed in great detail in Chapter 2.
GJL, which is similar to AMMBSC and uses TPMs, is avoided likewise. While
used widely, (D)TLS and SSH are avoided due to the absence of trust provisions
in addition to the difficulty of engineering TEE-based attestation in such protocols
retroactively while remaining reasonably formally verifiable.

4.7.3 Limitations

TEEs offer their own benefits in trusted sensing, but avoiding TPMs relinquishes
extensive hardware tamper-resistance. TEEs do not necessarily defend against
sophisticated hardware attacks and side-channel analyses, but are designed pri-
marily to resist software-based vectors. Consequently, we urge caution in using
our work where complex hardware attacks are a reasonable possibility, e.g. mili-
tary and government applications, where state-level adversaries comprise part of
a threat model. Secondly, GlobalPlatform recently defined the Sockets API [113]
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for initiating TCP/IP connections from the trusted world. This provides an inter-
esting avenue of research, which, in the context of our protocol, would remove a
context switch between the secure and trusted world. Mature implementations
of the Sockets API are not widely-available; OP-TEE, for example, does not fully
support GP Sockets API at the time of writing. We aim to revisit this in the future
when available in order to evaluate the overhead reduction, if any, in reducing
world context switches. Finally, defending against availability attacks is currently
an open challenge in TEE research [156]. TEEs rely implicitly upon co-operation
between untrusted and trusted world, and an untrusted world adversary that
simply drops messages from the TEE would immediately prevent protocol ex-
ecution, thus raising availability concerns. This TEE-wide vulnerability was
considered out-of-scope in this paper.

4.8 Conclusion

In this work, we investigated the application of TEEs to constrained sensing
devices that wish to communicate remotely, and raised the challenge of secure
and mutually trusted TEE intercommunication between remotely located devices.
To this end, the development and evaluation of a secure and trusted channel
protocol was presented that, unlike past work, provides one- or two-way remote
attestation for trust assurance without trusting intermediary components. The
proposal is applicable to sensitive deployments that would benefit from the ad-
vantages provided by TEEs without disclosing data to a potentially compromised
REE on either end-point. In Sections 4.4 and 4.5, both the goals and protocols
were formalised, along with the operational challenges and assumptions. In
Section 4.6, we discussed their implementation using two widely-used develop-
ment boards using ARM TrustZone, before evaluating its performance against
untrusted world TLS and SSH in Section 4.7. Both protocols were subjected
to formal analysis using Scyther, which found no attacks under the Dolev-Yao
adversarial model. The scripts are included in Appendix A. We showed that
our proposal executes within reasonable time (under 1.7 seconds on average)
and exhibits an overhead similar to existing work of approximately 4x overhead
versus TLS and SSH without optimisation.

4.8.1 Future Work

In future work, we aim to investigate the following lines of research:

• Trusted multi-party protocol. Generalising our protocol to create a trusted
channel shared between N-parties in close proximity. This could be advan-
tageous where security-sensitive, multi-party communications are used
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frequently, such as authentication schemes using sensor data from a body
area network (BAN), or a sensor-driven home automation system.

• Performance comparison with TPMs and other TEEs. We aim to conduct a
broad performance evaluation of our protocol with TPM-based solutions
and emerging TEEs, such as the AMD PSP and Trustonic Kinibi, on a range
of device types. Furthermore, we plan a performance comparison with
other cryptographic libraries.

• DAA-based privacy preservation. Our work, as is, allows the identification
and mapping of devices during the session from the exchange in TM-signed
messages using certified, device-specific signing keys. This was addressed
in TPMs using DAA, but, in this work, our concentration was focussed on
the baseline case before advancing to incorporating DAA-based schemes.
We believe that this would be the most beneficial next step in enhancing
our proposals in future work.

• Applicability of elliptic curves. Recent GP specifications include Elliptic Curve
Cryptography (ECC), but this is only an optional extra for compliance.
Moreover, only five NIST curves are supported currently, up to NIST P-521,
but further curves are expected to be released in the future [86]. Once
matured, we aim to revisit our protocol to provide elliptic curve-based
Diffie-Hellman (ECDH) to reduce key sizes and computational overhead.
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Chapter 5

EmLog: Tamper-Resistant Logging for
Constrained Devices with TEEs

5.1 Introduction

The previous chapters introduced secure and trusted technologies, and motivated
the development of the Trusted Execution Environment (TEE) as a low-footprint
mechanism to protect the critical data upon which many sensitive security sys-
tems depend. This proceeded to conducting the first investigation into evaluating
the application of TEEs to continuous authentication for preserving the confiden-
tiality and integrity of its assets at rest and during execution (Chapter 3). The
subsequent chapter identified, assessed and evaluated the issue of TEE inter-
communication on two remote devices, whereby TEEs may communicate over
a secure and mutually trusted channel without revealing TEE-resident data to
either device’s untrusted worlds.

This thesis continues its examination of establishing trust in modern em-
bedded devices using TEEs in this chapter by investigating its applicability in
protecting system logging data for facilitating audit and forensic investigations.
Secure and trustworthy system logging is beneficial in these scenarios. Ideally,
logs should be tamper-resistant both at rest and during execution, and should
remain protected during the transmission process to a trusted remote verifier.
This chapter proposes and evaluates EmLog – a novel secure logging mecha-
nism using ARM TrustZone and the GlobalPlatform TEE as a root of trust for
preserving logs on constrained devices.

5.1.1 Motivation

Recording and analysing system logs are a principal feature of audit and forensic
investigations in event reconstruction, error detection (and subsequent remedi-
ation), and intrusion detection [231]. These logs record salient system features,
such as user activity, resource consumption, peripheral use and error details. The
primary aim is to construct an audit trail in order to understand system activity,
enforce user accountability, and evidence malicious behaviour. Consequently,
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logs are routinely targeted by adversaries to conceal evidence of wrongdoing.
Because of this, both NIST [231] and ISO 27001:2013 (Annex A, A.12.4) [232] rec-
ommend secure log-keeping as an essential practice in preserving the auditability
of a compromised system. Not only should logs be stored in a way that crypto-
graphically preserves their confidentiality and integrity, but trusted computing
primitives have been identified as desirable in existing proposals [233], [234].
Such technologies, primarily TPMs, have been used for tamper-resistant storage
of logging keys, performing log-centric cryptographic operations, and providing
evidence of platform integrity to third-party verifiers using remote attestation.

However, the advent of low-cost, mass-produced Internet of Things (IoT)
devices complicates the use of trusted computing for tamper-resistant logging.
As stated previously in this thesis, a multitude of proposals suggest using IoT
devices in sensitive application domains, like health and social care remote
monitoring [235], [236], identifying fires and gas leakages in the home [237],
and monitoring the operational and environmental conditions of manufacturing
spaces and equipment [18] – all of which are natural applications for tamper-
resistant logging. The current body of related work focuses principally on the
application of discrete hardware TPMs, which presents a variety of previously
discussed challenges relating to constrained devices. The most pertinent draw-
back is the TPM’s inability to directly host arbitrary applications, e.g. a secure
logging application, without using additional software processes that concen-
trated on launching TPM-backed hypervisors [233], [238]. Earlier TPM-based
TEEs suffered from well-known challenges surrounding the size of its Trusted
Computing Base (TCB) – the minimal set of software and hardware components
essential to its security – that widened the scope for introducing security and
performance defects [92], [239], [240]. Over time, modern TEEs, typified by Intel
SGX and ARM TrustZone, have converged towards enabling isolated execution
using the same core execution hardware of the REE; the TCB, ultimately, is re-
duced to this hardware – the CPU (SGX) or SoC (ARM TZ) – and the software
interface definitions exposed between the REE and TEE.

Existing TEE-based logging schemes have hitherto applied only server-side
TEEs to protect logs transmitted from remote devices. The challenge of protecting
logs on constrained devices with TEEs in particular remains, to the best of our
knowledge, unaddressed in existing literature.

5.1.2 Chapter Structure

In this chapter, we present EmLog – a tamper-resistant logging system that
leverages the GlobalPlatform TEE and ARM TrustZone for protecting logs at
source on mobile and embedded systems. EmLog offers further security benefits
over past work, including public verifiability of log origin, resilience to TEE key
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compromise, and supports secure I/O with peripheral devices. After reviewing
related work (Section 5.2), we formalise the security goals and threat model in
Sections 5.3 and 5.4 respectively. EmLog is implemented on an off-the-shelf ARM
development board hosting OP-TEE [160] – an open-source and GlobalPlatform-
compliant TEE that uses TrustZone (Section 5.6) – and evaluated using three
datasets in Section 5.7. Finally, we conclude our work in Section 5.8 and identify
future areas of research.

5.1.3 Contributions

To our knowledge, this is the first attempt at preserving logs on constrained
devices using TEEs as a root of trust. The contributions of this paper are:

• The proposal of a novel secure logging scheme for creating tamper-resistant
logs with trust assurances based on the GlobalPlatform TEE. The system is
tailored for ARM-based constrained devices, such as wearables and sensing
platforms, for on-device protection of logs for potential use in audit and
forensic investigations.

• A test-bed evaluation using a GlobalPlatform-compliant TEE instantiated
by ARM TrustZone, with performance benchmarks across three datasets.
The results indicate that EmLog has low run-time memory footprint, five-
times persistent storage overhead, and 430–625 logs/sec throughput.

This chapter is based on our following publication:

• C. Shepherd, R. N. Akram, and K. Markantonakis. “EmLog: Tamper-
Resistant System Logging for Constrained devices with TEEs,” in Proceed-
ings of the 11th IFIP International Conference on Information Security Theory
and Practice, ser. WISTP ’17, Springer, 2018.

5.2 Related Work

Existing proposals may be categorised as: 1), secure untrusted system logging,
focusing on cryptographic methods for detecting tampered logs on untrusted
platforms; and 2), trusted logging, for applying trusted hardware primitives for
log preservation. The key proposals and their contributions are now examined.

5.2.1 Secure Untrusted System Logging

Secure untrusted system logging schemes seek to detect the tampering of logs
on an untrusted machine, M , after some compromise at point t in time. M is
assumed to possess the ability to collect and store system log entries to file(s)
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and, upon request, transmit them to a verifier, V , over a secure channel who
then inspects and verifies the contents. Before time t, M is not assumed to be
compromised, and, for most schemes, M and V are assumed to possess a pre-
shared key (PSK), which we denote the Root Logging Key, RLK. After t, little
can be done to trust the contents of logs produced after that point, but these
schemes do address protecting the logs produced prior to t.

Schneier and Kelsey [241] proposed the use of MACs within a linear one-way
hash chain to protect log integrity. Each entry is of the formLj = (Wj , Aj , EKj (Dj)

, Yj , Zj), consisting of a log entry typeWj , an authentication keyAj , the encrypted
log entry EKj (Dj), an incremental hash entry Yj = h(Yj−1, EKj (Dj),Wj), and a
MAC entry Zj =MACAj (Yj). The scheme rests on a one-way hash function, h,
used to incrementally key the MACs of Zj , as each MAC key, Aj , is found by
computing Aj = h(Aj−1), where A0 is the RLK. The MAC key is also used in
the derivation of the log encryption key by computing Kj = h(Wj , Aj). It is also
necessary to delete the incremental keys, Aj , at each stage in order to prevent an
adversary from fabricating logs and reconstructing the chain retrospectively. The
concept of a hash chain underpins the bulk of proposals in secure logging, with
and without trusted hardware. Bellare and Yee [242], similarly, propose updating
the secret key at regular time intervals (epochs) using a sequence of values from
pseudo-random functions, implemented using the International Data Encryption
Algorithm (IDEA), to update the log MAC keys in each epoch. They denote the
infeasibility of deriving MAC keys in previous epochs as ‘forward integrity’.

Both of these schemes are based inherently upon symmetric cryptography;
the initial RLK must be distributed to any V wishing to verify the logs’ integrity.
This poses a key management challenge if V changes or is potentially one of
several entities; large numbers of RLK keys must be securely managed across
all interested parties. To address this, Holt [243] propose LogCrypt that uses
public-key cryptography in conjunction with the scheme in [241] by replacing the
MACs with signatures from regularly re-generated key-pairs. A hash-chained
symmetric RLK is still used to to key the encryption of logs using an appropriate
algorithm, e.g. AES. In accordance with the security principle of key separation,
LogCrypt uses differing keys for encryption and verification, rather than using
RLK for both tasks, as in [241]. Logcrypt also offers public verifiability such that
third-parties can authenticate the origin of log entries without knowledge of a
secret PSK (shortfalls of [241] and [242]).

Later, Ma et al. [244] introduced FssAgg, which uses an aggregated chain
of signatures to achieve public verifiability and to thwart truncation attacks in
which an attacker aims to delete a tail-end subset of log entries. Yavuz et al. [245]
proposed LogFAS, which addresses both challenges with better storage and com-
putational complexity than [243] and [244] using the Schnorr signature scheme.
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Recently, however, Hartung [246] presented four attacks against LogFAS [245]
and two variants of FssAgg [244], which enables secret key recovery and log
forgery. Consequently, both schemes are dissuaded from use.

5.2.2 Secure Logging with Trusted Hardware

The other category of related work focusses on the application of trusted com-
puting primitives in order to facilitate secure logging. This includes providing
stronger guarantees for the security of the logging application (known also as
a ‘logger’) both under execution and at rest, as well as the confidentiality and
integrity of log entries. These schemes are complementary to previous schemes
by taking a system security perspective rather than a wholly cryptographic one.
Indeed, it is the case that many of these systems – described below – incorporate
cryptographic principles from the previously described schemes.

In 2003, Chong et al. [247] produced the first work in applying tamper-
resistant hardware for providing additional security assurances with respect
to cryptographic logging schemes. The authors explore the use of the iButton1 – a
device containing 134kB NVRAM, a real-time clock (RTC) and a 32kHZ processor
in a 17.35mm cylindrical stainless steel enclosure2 – in order to protect the initial
pre-shared key, RLK (or A0), of the Schneier and Kelsey scheme [241]. The
iButton is used to provide tamper-resistant timestamping of log entries, as well
as encryption using 64-bit DES from SHA-1 keys.

Later, Sinha et al. [234] suggested a using a TPM with a novel forward integrity
scheme based on branched key chaining and the Schneier and Kelsey [241]
scheme. Here, logs are divided into epochs (blocks) with each block comprising
an independent sequence of hash-chained log entries (sub-epochs). The purpose
of this subdivision is to reduce the overhead of sealing each individual log entry
to storage using the TPM. The root entries of each epoch are hash-chained with
past epochs, thus creating a two-dimensional hash chain for protecting against
re-ordering attacks. A re-ordering attack is one in which an adversary re-orders
log blocks (arranged in time) in order to mislead investigators; that is, attempting
to construe a series events that may be correct in their contents but not in their
chronology. For each new epoch, the previous epoch’s logs are securely stored
using the TPM’s seal functionality in the typical fashion, i.e. encrypts the logs
with a TPM-bound key such that only that particular TPM can decrypt/‘unseal’
them.

Böck et al. [233] explored the use of AMD’s Secure Virtual Machine (SVM)
– an early inception of the TEE – for launching a syslog client daemon and

1iButton: https://www.maximintegrated.com/en/products/ibutton/ibuttons/
index.cfm

2The iButton famously underpinned the Java Ring [248] in the late 1990s.

https://www.maximintegrated.com/en/products/ibutton/ibuttons/index.cfm
https://www.maximintegrated.com/en/products/ibutton/ibuttons/index.cfm
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logging application from the TPM’s secure boot chain. The logger executes with
access to TPM-bound key-pairs for encrypting and signing individual log entries.
Upon request, the logs are decrypted and transmitted to the verifying party over
a secure channel. The TPM keys are certified for authenticating that signed logs
originated from a particular AMD SVM instance; the TPM is used in convincing a
remote verifier of the platform’s expected operating state via remote attestation.

Nguyen et al. [249] proposed streaming medical logs to a server application
executing within an Intel SGX enclave (see Section 2.4.6) that applies the tamper-
resistance algorithm. In this scheme, logs are transmitted from healthcare devices
to the enclave using TLS, which then computes a simple hash chain scheme in
which each value is found using ai = h(ai−1, si, h(c)), where ai is the current
entry, si is the ith sequence number, and c is the contents of the log message. Each
log entry is signed using an key-pair stored within the enclave and subsequently
stored to file using SGX’s sealing mechanism.

Karande et al. [250] introducde SGX-Log, which protects server-side device
logs received from arbitrary remote devices. SGX-Log, like [234], uses block-
based hash chains and seals them to secure storage for persistent log integrity and
confidentiality; the scheme, like [249], is also implemented within an SGX enclave.
The authors note that continual sealing also provides resilience to attacks in which
large volumes of logs in memory are lost due to a power loss. Remote attestation
is also suggested to authenticate the server enclave before transmitting the logs.
However, public-key cryptography is not used establishing public verifiability
of origin, unlike [233] and [243], nor is it apparent how to protect logs from
the devices from which they are sourced. The proposed scheme is evaluated
using three datasets on an SGX-enabled Linux system with an eight-core Intel
i7-6700 CPU (3.4GHz) and 64GB RAM, yielding a small (<7%) overhead versus a
non-SGX implementation.

5.2.3 Discussion

Modern TPM- and TEE-based approaches [233], [234], [249], [250] still fall short of
satisfying many desirable properties identified in past work. Public verifiability
of origin, as in [233] and [243], has not been addressed in recent TEE loggers for
directly authenticating system data from remote devices. Most notably, recent
TEE-based schemes, i.e. [250] and [249], focus primarily on protecting logs after
being received by a server-side log processing application. There has been
little attention paid to protecting logs collected on source devices, which may
themselves host a TEE. An adversary aboard a compromised source device may
simply tamper the logs before reaching the server that applies some tamper-
resistance algorithm. This is where the contribution of this work lies; the focus is
on protecting logs at source on constrained devices.
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To complicate matters, source devices are unlikely to transmit logs in real-
time in order to minimise network and computational overhead, and so secure
storage should be used to preserve unsent logs. Moreover, TEEs typically contain
other security-critical applications, such as biometric authentication and payment
tokenisation. As a result, a TEE-based logging mechanism should operate with
reasonable resource consumption, particularly run-time memory, to preserve
performance and limit the rise of Denial of Service (DoS) conditions.

5.3 Security Goals

To scope this work, we identify a series of security and functional goals for
constructing a TEE-based system for protecting logs on constrained devices,
which are drawn from the issues identified in related work in Section 5.2:

R1. Isolated execution: the system shall process logs in an environment isolated
from a regular ‘rich’ OS, e.g. Android, to provide strong integrity assurances
of the application and data under execution.

R2. Forward integrity: the integrity of a given block of logs shall not be affected
by a key comprise of a previous block.

R3. Log confidentiality: on-device log confidentiality should be preserved to
prevent the disclosure of potentially sensitive entries.

R4. Remote attestation: the proposal shall allow third-parties to verify the logging
application’s integrity post-deployment to provide assurances that logs
were sourced from an integral and authentic platform.

R5. Secure log retrieval: remote, authorised third-parties shall be able to securely
retrieve device logs with mutual trust assurances.

R6. Public verifiability: the system shall allow third-parties to authenticate the
origin of log entries without access to private key information.

R7. Truncation attack-resistant: the system shall be resistant to attacks that aim
to delete a contiguous subset of tail-end log entries.

R8. Re-ordering attack-resistant: the proposal shall resist attempts to change the
order of entries in the log sequence.

R9. Power-loss resilience: the loss of tamper-resistant logs shall be minimised in
the event of a device power-loss.

R10. Suitable root of trust: a root of trust for constrained device architectures shall
be used, ideally without requiring additional security hardware.
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5.4 Threat Model

Two types of adversary are addressed for when, firstly, the logs are collected and
processed on the device and, secondly, when they are retrieved by a verifier over a
network. These are described as follows:

• On-device adversary: a software-based attacker that compromises the system
at time t and attempts to arbitrarily alter, forge or observe logs produced
before t. This adversary can operate at any protection level in the untrusted
world, i.e. Rings 0–3, including arbitrarily altering execution flow and
accessing non-TEE kernel space services. For example, the attacker may
aim to modify the contents of individual log entries to conceal any evidence
of wrongdoing, or, like [250] and [234], perform re-ordering attacks in which
blocks of log entries are re-ordered to construe a misleading sequence of
events chronologically. As stated in Section 5.3, we also tackle the issue of
truncation-resistance, identified in [244], where an attacker aims at deleting
at sub-set of tail-end log entries. Additionally, like [250], we consider power-
loss attacks in which an attacker disables power to the device with the aim
of erasing significant numbers of logs kept in volatile RAM.

• Network adversary: an adversary that attempts to arbitrarily alter, forge,
replay or observe logs between the source device and the verifier over a
network channel, e.g. Bluetooth or WiFi/802.11. The attacker may also
attempt to masquerade as a legitimate party to either end-point to collect
logs illicitly. Here, we consider the principle goal of the attacker to modify or
observe log entries as they are transmitted over-the-air to the log verifying
authority.

The first case considers an on-device adversary similar to related work, namely
Böck et al. [233], Karande et al. [250], Sinha et al. [234], and the secure untrusted
system logging schemes identified in Section 5.2.1. In other words, we do not
attempt to secure untrusted world logs after a compromise by the above adversary
after time t, as a kernel-mode adversary may simply write directly to the kernel
message buffer used to queue log entries (see Section 5.5.1). Related to this, we
do not consider denial-of-service (DoS) attacks from an adversary after time t
who attempts to flood the logging scheme with log entries at a rate faster than
they are processed in the TEE. As per related work, the assurances are valid only
before time t at which the device is compromised by the on-device adversary
stated above. Principally, the aim is to protect system logs collected before time t
against kernel-level adversaries. In the second case, for the network adversary,
we do not cover DoS attacks in which the attacker impedes all network traffic
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between device and the verifier, thus preventing log retrieval; physical retrieval
would be one remedy in this situation.

We assume the presence of a GlobalPlatform-compliant TEE that satisfies the
GlobalPlatform TEE Protection Profile, the scope of which was discussed in detail
in Section 2.4.7 of Chapter 2. As such, threats that fall outside the protection remit
of the GlobalPlatform TEE are beyond the scope of this work, such as developer-
induced TA and TEE programming errors, supply chain attacks, and advanced
hardware attacks requiring substantial time, capital, equipment and expertise,
e.g. laser fault injections. Consequently, caution is urged in situations where such
threats are considered. We refer the reader back to Sections 2.5.1, 2.5.2 and 2.6 for
a discussion of the threats considered within the security remit of TEEs and other
secure and trusted execution technologies generally. For clarity, we consider the
issue of log entry analysis – the act of assessing system activity and detecting
anomalous and malicious events, usually achieved using anomaly detection
algorithms (see Xu et al. [251] and Fu et al. [252]) – to also be out-of-scope in this
work.

5.5 EmLog Architecture Design

We assume the presence of a GlobalPlatform-compliant TEE, a service provider
that provisions EmLog into the TEE before deployment, and a third-party wishing
to retrieve all or a partial set of the device’s logs in order to verify them. The GP
TEE, which maintains two sets of applications for each world, necessitates two
logging components: one that collects logs from untrusted world applications and
transmits these to the TEE over the world boundary via the GP Client API [85],
and another that applies the protection algorithm within the TEE and responds to
retrieval requests. An extension to the hash matrix in [234] and [250] is proposed
to apply the tamper-resistance scheme within the GP TEE, which is developed
further in Section 5.5.2. Next, the log blocks are stored every n blocks, or at a time
epoch t, using the secure storage functionality of the GP TEE. After receiving a
retrieval request, the source TEE authenticates the remote verifier and vice-versa,
after which the blocks are unsealed and transmitted over a secure and trusted
channel between the TEEs (Section 5.5.3). We illustrate this process in Figure 5.1.
Each stage is described in the following sub-sections.

5.5.1 Log Collection

A conventional Linux-based kernel uses an internal message ring buffer to store
log messages, which is made available to user space monitoring applications,
such as dmesg and klogd, using the sys_syslog syscall. For user-mode log-
ging, syslogd listens on /dev/log, where logs are registered to using the
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FIGURE 5.1: High-level TEE-based logging workflow.

syslog function from the C standard library. Logs are subsequently written to
file or transmitted through the syslog protocol to a remote server over a User
Datagram Protocol (UDP) connection. Some implementations, e.g. syslog-ng,
provide further functionality like streaming logs over TCP with TLS. For col-
lecting untrusted world logs, we suggest a syslogd variant that, ideally on a
per-entry basis, transmits each system-wide log entry over the world boundary
to the EmLog TA executing within the GP TEE via the GP Client API.

5.5.2 Block Generation

A variant of the hash matrix used in [250] and [234] is proposed for preserving
the integrity of log entries and their sequence in time; we develop how this is
expanded to enable public verifiability while limiting the exposure of a master
Root Logging Key (RLK) using appropriate key derivation.

In such a structure, hash sequences are created in which each block key, bK,
is derived using a one-way hash function, h, over the previous block key and
current block ID, bID; that is, bKbID = h(bKbID−1, bID). The initial block key
(bID = 0) is derived from a device-specific RLK. Each block key is used to derive
an individual message key, k, for keying an HMAC in a similarly chained fashion,
i.e. k(bID,mID) = h(k{bID,(mID−1)},mID) for log entry mID in block bID, up to
the block size m. Note that bK is used to derive k when mID = 0. A block-based
approach provides power-loss resilience and truncation resistance (developed
further in Section 5.5.3) while allowing the retrieval of subsets, i.e. blocks i to
j, without transmitting all logs from the genesis block (bID = 0) to the remote
verifier.

As it stands, this scheme is vulnerable to forgery attacks if just a single
block key is compromised: an adversary can apply h on the leaked key with
the next block ID to forge subsequent blocks and entries therein. Consequently,
storing RLK and deriving keys within trusted hardware, e.g. an secure element
(SE) or TPM, is desirable, but with the cost of additional hardware complexity.
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FIGURE 5.2: Proposed signature-based log matrix.

TEEs provide strong resilience to software attacks, but, unfortunately, are not
invulnerable to developer-induced programming and API errors. The impact of
RLK and block key divulgence, however, can be limited using a key derivation
scheme – a simple one of which we describe below.

Key Derivation. We suggest a simple scheme as follows:

1. Intermediate keys (IKs) are derived from the RLK using a secure key deriva-
tion function. Each IK is subsequently used to derive keys for c blocks in
that group.

2. Each IK derives an initial block key, bKbID, for that block group; IK must
then be erased from (run-time) memory.

3. This first bKbID is then used to sequentially derive the message-specific
keys within that block; each message-specific key should be erased from
memory.

4. The next bKbID is derived using kdf(bKbID−1, bID) for up to c blocks, after
which another IK is generated. After generating bKbID, then bKbID−1

should be erased from memory to limit unnecessary exposure. The scheme
then repeats from step 2 with the newly generated IK.

In past proposals, the disclosure of a block key would necessitate the re-
provisioning of the RLK – a device-specific, possibly hardware-infused key, which
would affect the device in perpetuity without potentially costly intervention. Our
approach (Figure 5.2) limits the damage wrought by a compromised block key
by affecting only future blocks in that group. In the worst case, besides divulging
RLK, the exposure of an IK can compromise only c blocks at most.
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For the key derivation function, we suggest the HMAC-based extract-and-
expand KDF (HKDF) by Krawczyk [253], [254] (RFC 5689). HKDF takes keying
material and a non-secret salt as input, and repeatedly generates HMACs under
the input to return cryptographically strong output key material. Unlike plain
hash functions, used prevalently in past work, HKDF produces provably strong
key material from as-strong or weaker input key material [253].

Log Integrity and Verifiability. For log message integrity, first compute
hmac(`(bID,mID)) for message `with block ID, bID, and message ID,mID, under
key k(bID,mID) – derived from the previous message key or, for mID = 0, the
block key. As stated above, each k should be immediately deleted from memory
to limit memory consumption and exposure. This does not prevent auditing log
sequences, since message keys may be regenerated from the pre-shared RLK.

In current symmetric-only schemes [234], [241], [247], [250], public verification
of log origin (R6 in Section 5.3) requires knowledge of block and message keys on
all interested devices, which is derived ultimately from RLK. Evidently, revealing
RLK is undesirable as it enables the malicious creation and manipulation of
valid blocks. Rather, we propose signing each block with an efficient signature
scheme, σ, such as ECDSA, and a device-specific signing key-pair (pk, sk) over
the concatenation of the block message HMACs (Figure 5.2). This key-pair should
be certified by a CA trusted by both the verifier, V , and host GP TEE device in
order to provide data origin authentication. The RLK and key-pair should be
accessible only to the TEE, which is achievable using the TEE’s secure storage
mechanism or, for hardware tamper-resistance (and its associated deployment
overhead), using an external SE as suggested by GlobalPlatform [48]. In some
circumstances, logs may contain sensitive data, in which case we suggest limiting
verifiability to whitelisted entities. It is also observed that the block size, m, is
inversely proportional to the number of signing operations; smaller block sizes
will incur more signing operations for a given set of log entries (see Section 5.7
for this overhead).

5.5.3 Secure Storage and Remote Retrieval

Real-time log streaming is likely to be detrimental for power- and network-
limited devices, and we suggest storing blocks prior to eventual transmission
within the TEE’s secure storage. Secure storage can be implemented in two ways
according to GlobalPlatform:

1. Using the file-system and storage medium, e.g. flash drive, controlled by
the untrusted world “as long as suitable cryptographic protection is applied,
which must be as strong as that used to protect the TEE code and data itself” [86].

2. Using hardware controlled only by the TEE, such as an external SE.



5.5. EmLog Architecture Design 145

In the first method, log blocks are typically sealed using authenticated en-
cryption, e.g. AES in GCM mode [86], with a key derived specifically for the TA
under execution from a separate, device-specific root storage key. This prevents
other TAs or other entities from accessing secured data, thus providing on-device
log confidentiality (R3), integrity and authenticity. While requiring additional
hardware, the second method is resilient against adversaries that aim to delete
encrypted records from an untrusted file-system. This deletion threat is otherwise
difficult to address unless the storage medium is a so-called ‘WORM’ medium
(Write Once Read Many), such as a single-write compact disc (CD-R).

Note that securely storing every completed block, i.e. in [250], may yield
undesirable performance overhead for the devices targeted in this work. Rather,
the parameters c (block group size) and m (block length) can control the number
and size of blocks kept in RAM respectively. This satisfies power-loss resilience
(R9), in addition to R3, by limiting the number of new blocks kept in memory
(for sufficiently small values of c and m, which we evaluate in Section 5.7). This
approach also satisfies truncation attack-resistance (R7), assuming the logs are
stored on a medium accessible only to the TEE, e.g. secure element or separate
replay-protected memory block and not, for example, encrypting logs to an
untrusted filesystem under the potential control of the on-device adversary in
Section 5.4.

In past work, log retrieval is proposed using TLS [249], or one-way remote
attestation for authenticating the platform of the remote verifier [250]. (Many
remote attestation protocols, such as EPID used in Intel SGX [169], enable secure
channels to be bootstrapped, over which unsealed logs can be transmitted se-
curely). However, the remote authority, which may itself process logs in its own
TEE [249], [250], is likely to request reciprocal trust assurances from the source
TEE; this is, two-way remote attestation to be performed for both the source and
verifying entities. Rather than performing one-way attestation separately for both
entities, one alternative is mutual TEE attestation as proposed in previous chapter
(Chapter 4) in which both communicating TEEs are attested and authenticated
within the protocol run. Using this, a secure channel can be bootstrapped be-
tween the TEE end-points over which unsealed logs can be transmitted securely
without exposing them to untrusted world elements, thus meeting secure log
retrieval (R5) in Section 5.3. In the forthcoming chapter, Section 6.8 of Chapter 6,
we develop the idea of secure log retrieval with mutual attestation and describe
its instantiation using the BTP protocol proposed previously in Chapter 4.
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5.6 Implementation

We implemented EmLog using OP-TEE – an open-source, GlobalPlatform compli-
ant TEE by Linaro [160] – with Debian OS (Linux-based) as the untrusted world
OS. Two applications were developed in C – the only development language
supported at the time of writing by OP-TEE – for the EmLog trusted application
(TA) residing within the secure world, and a separate application in the untrusted
world. The untrusted world application reads static log entries from file and
sequentially transmits each log entry as a string to the EmLog TA residing in OP-
TEE using the GP Client API [48]. OP-TEE abstracts low-level details of handling
world context switches via secure monitor code using SMC calls; the switch to
the TrustZone secure world is performed transparently to the target TA using the
GP Client API via its universally unique identifier (UUID). Our implementation
transferred each log message sequentially from file to the EmLog TA; that is,
two world context switches per log entry to, firstly, transfer the entry contents
where it is processed further, and, secondly, to return the success indicator to the
untrusted application.

After the EmLog TA receives each entry from the untrusted world application,
it is processed into a data structure comprising a 4-byte message ID, 32-byte
HMAC tag, and 256-byte field for the entry text. The GP Internal API [86] was
used to interface with the cryptographic methods; in OP-TEE, cryptographic
methods are implemented using the LibTomCrypt library. More specifically,
SHA-256 was used for log entry HMACs (TEE_TYPE_HMAC_SHA256 in GP In-
ternal API nomenclature) and also for the implementation of HKDF for message,
block and intermediate key derivation3. Block keys are derived upon receiving
the first message of a block, while message keys are derived sequentially when
each successive log entry is received; IKs are derived upon the creation of the first
block and then after every c blocks. Each completed message data structure is
inserted into a separate data structure representing the message block containing
a 4-byte block ID and a signature on a hash of the concatenated log HMACs us-
ing 256-bit ECDSA (NIST secp256r1 curve via TEE_ECC_CURVE_NIST_P256
from the GP Internal API).

Each block is then encrypted to secure storage and deleted from RAM before
constructing the following block. Secure storage is performed transparently in
OP-TEE when calling the Trusted Storage API functions from the GP Internal
API; in particular, the TEE_*PersistentObject() function family from [86].
By default, data is encrypted to the untrusted world file-system using 128-bit
AES in GCM mode (32GB eMMC flash memory was the default storage medium
on our implementation platform: the same HiKey LeMaker development board

3Based on the python-hkdf implementation from https://github.com/casebeer/
python-hkdf.

https://github.com/casebeer/python-hkdf
https://github.com/casebeer/python-hkdf
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used in previous chapters). This is keyed under a TA-specific storage key (TSK)
by OP-TEE, which is derived from its UUID and a root secure storage key (SSK)
as follows: TSK = HMAC(SSK, TAUUID) using HMAC-SHA256. Encrypted
data is then stored by OP-TEE in the untrusted world’s Linux file-system under
the /data/tee/ directory. The reader is referred to [255] for further details
regarding OP-TEE’s secure storage mechanism.

We note that the GP Internal API defines its own memory allocation functions,
TEE_Malloc and TEE_Free, for dynamically (de-)allocating memory to regions
accessible only to the TA, which were used frequently for memory-managing
blocks and messages at run-time. Log blocks were subsequently deallocated
once committed to secure storage using the GP Internal API to limit minimise
consumption. As discussed in Chapter 3, memory consumption is an issue with
OP-TEE when working with large datasets. The current OP-TEE release allocates,
by default, 32MB RAM for the TEE kernel and all resident TAs, with the rest
allocated to the untrusted world OS. For a standard TA, the Linaro Working
Group stipulates a default stack and heap size of 1kB (stack) and 32kB (data)
respectively, both of which can be increased up to a maximum recommended 1MB
per TA. This can be adjusted up to the RAM limitations imposed by the deployed
platform by adjusting OP-TEE’s compilation flags; the 1MB recommendation was
violated, to 2MB, for evaluating the largest group of blocks kept in memory prior
to secure storage – discussed further in Section 5.7.

5.7 Evaluation

EmLog was evaluated using a HiKey LeMaker – an ARM development board
with a Huawei HiSilicon Kirin 620 SoC with 2GB RAM and an ARM Cortex A53
CPU (eight-cores at 1.2 GHz with TrustZone extensions). This same platform
has underpinned the implementations of the previous test-beds in this thesis; its
specifications are typical of modern medium-to-high end IoT-type systems based
on SBCs. The proposal was benchmarked using three log file datasets that are
now described briefly:

1. U.S. Securities and Exchange Commission (SEC) EDGAR: Apache logs from
access statistics to SEC.gov. We use the latest dataset4 with over a million
entries (192 MB). (Mean entry length: 115.1 characters; S.D.: 5.7).

4US SEC EDGAR: http://www.sec.gov/dera/data/Public-EDGAR-log-file-data/
2016/Qtr2/log20160630.zip

http://www.sec.gov/dera/data/Public-EDGAR-log-file-data/2016/Qtr2/log20160630.zip
http://www.sec.gov/dera/data/Public-EDGAR-log-file-data/2016/Qtr2/log20160630.zip
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TABLE 5.1: Mean key derivation and secure storage times (mil-
liseconds; S.D. in brackets).

Key Derivation Secure Storage Seal Secure Storage Unseal

IK Block Key Message Key IK Block IK Block

1.530 (0.067) 1.541 (0.062) 1.547 (0.088) 59.46 (3.78) 115.80 (5.36) 48.22 (2.73) 94.88 (2.80)

TABLE 5.2: Mean HMAC and ECDSA generation and verification
times (milliseconds).

HMAC (SHA-256) ECDSA (NIST P256)

Generate 0.056 (0.020) 20.14 (1.29)

Verify 0.059 (0.014) 20.77 (1.33)

2. Mid-Atlantic Collegiate Cyber Defense Competition (CDC): IDS logs from the
U.S. National CyberWatch MACCDC event, with∼166,000 (27 MB) of Snort
fast alert logs5. (Mean entry length: 165.3 characters; S.D.: 38.2).

3. EmLogs: Our dataset from OP-TEE OS boot, initialisation and GlobalPlat-
form test suite logs via the xtest command, and untrusted world logs from
dmesg. Over 25,000 records (1.7MB). (Mean entry length: 94.1 characters;
S.D.: 49.3).

The results are shown in Tables 5.1 to 5.4 and Figure 5.3. Table 5.1 shows
the mean CPU time to derive 256-bit IKs, block and message keys from a pre-
generated RLK using HKDF. These were measured over 1,000 iterations within
the EmLog TA using the GlobalPlatform TEE_Time method for system time,
which is implemented using the ARM Cortex CNTFRQ (CPU frequency) and
CNTPCT (count) timing registers. Table 5.1 shows the mean time for sealing
and unsealing IKs and blocks (for m = 100, averaged across all entries) via the
GP Internal API. Table 5.2 lists the mean 256-bit ECDSA and HMAC-SHA256
times computed across all entries, while Table 5.3 shows the mean creation and
verification times of message blocks for each dataset (for varying values of m, the
number of entries per block), as well as block groups. In this context, verification
encompasses the time to reconstruct the hash matrix in Figure 5.2 and to verify
the block signatures and message HMACs. Group creation and verification time
was measured for varying values of c (blocks per group), which included the time
for sealing and unsealing blocks to secure storage respectively. Table 5.4 shows
the mean persistent memory consumption of logs in secure storage, which was
measured directly from the aforementioned /data/tee directory containing TA-
sealed files. Lastly, Figure 5.3 shows the relative performance of secure storage,
key derivation and block and group creation/verification times from Table 5.1.

5MACCDC dataset: http://www.secrepo.com/maccdc2012/maccdc2012_fast_
alert.7z

http://www.secrepo.com/maccdc2012/maccdc2012_fast_alert.7z
http://www.secrepo.com/maccdc2012/maccdc2012_fast_alert.7z
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TABLE 5.3: Mean block and group generation and verification
times (milliseconds).

Block Group (fixed at m = 100)
Dataset (m =)10 100 250 500 (c =)1 10 25 50*

(1)
Gen. 40.1 (2.1) 70.5 (2.2) 115.6 (2.6) 198.7 (3.6) 229.4 (6.4) 1898 (30.2) 4622 (48.1) 9101 (80.2)

Verify 41.2 (1.5) 71.9 (1.7) 114.8 (1.9) 204.3 (2.1) 213.4 (5.7) 1634 (23.7) 3967 (50.0) 8302 (78.3)

(2)
Gen. 39.8 (1.9) 68.3 (1.7) 117.2 (1.7) 202.3 (2.0) 231.7 (7.3) 1910 (28.1) 4687 (64.0) 9323 (81.5)

Verify 40.1 (1.6) 66.2 (1.8) 119.9 (1.8) 199.0 (2.0) 215.2 (6.1) 1658 (23.8) 4046 (47.3) 8165 (73.9)

(3)
Gen. 42.1 (3.0) 69.1 (2.1) 118.6 (2.3) 201.9 (3.2) 230.0 (6.9) 1890 (27.0) 4621 (42.8) 9274 (79.0)

Verify 40.0 (1.6) 69.3 (1.8) 120.4 (1.8) 200.4 (1.9) 217.3 (6.4) 1656 (25.2) 4132 (48.1) 8188 (75.5)

* Heap size set to 2MB to accommodate all data.
All other experiments recorded with the maximum recommendation of 1MB.

TABLE 5.4: Mean persistent memory consumption for per block
secure storage across all datasets (kilobytes).

Block Sizes

(m =)10 50 100 250 500 750 1000 2500

16.4 (1.4) 41.0 (1.8) 73.7 (1.9) 155.7 (4.3) 307.2 (10.9) 454.7 (11.1) 606.2 (11.8) 1495.0 (16.2)

5.7.1 Discussion

Little to our surprise, block generation and verification time scales linearly with
message length, which, for large values of m, is influenced heavily by the key
derivation operations (approximately 1.5ms per message, shown in Table 5.1).
At smaller values, e.g. m = 10, this is dominated mostly by the ECDSA overhead
(∼20ms, as per Table 5.2). Figure 5.3 indicates that the relative timing overhead is
∼80–100% for every 100 message increase in the block length.

Group creation and verification times rise significantly with the number of
blocks, c, kept in RAM before secure storage. This is driven significantly by
the secure storage overhead, which is measured at approximately 115.8ms and
94.9ms for sealing and unsealing respectively (Table 5.1). Despite this, however,
even the largest group sizes, c = 25 and c = 50 (2,500 and 5,000 entries in
total), completed between 4.0 to 9.3 seconds, corresponding to a throughput
of approximately 538 and 625 logs per second. At first, it seems attractive to
maximise c to avoid the expense of secure storage operations, which caused the
throughput to drop to ∼430 and 525 entries for the smallest groups (c = 1 and
c = 10 blocks). Maintaining many blocks in RAM, however, increases the impact
of a power-loss; systems that log infrequently may see significant data loss if
large numbers of logs spread over a large period of time are lost. Consequently, c
should be set based on the expected log and transmission frequencies.

For memory consumption, all experiments were conducted within the Linaro
Working Group’s run-time recommendations (1MB stack and heap), except for
c = 50 blocks (5,000 entries), which required 2MB of each. Expectedly, persistent
memory consumption of block secure storage (Figure 5.3) scales linearly with
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FIGURE 5.3: (a), Relative block creation and verification times ver-
sus block length; (b), relative group generation and verification for
varying numbers of blocks; (c), persistent memory consumption
for per block secure storage; (d), relative memory consumption
for group secure storage; and (e), raw key derivation and secure

storage times.
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TABLE 5.5: Security goal comparison with related work.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Root of Trust

Untrusted World Schemes
Schneier & Kelsey [241] – 3 3 – – 7 7 7 – – –
Bellare & Yee [242] – 3 3 – – 7 7 7 – – –
FssAgg [244] – 3 7 – – 3 3 3 – – –
Logcrypt [243] – 3 3 – – 3 7 7 – – –
LogFAS [245] – 3 7 – – 3 3 3 – – –

Trusted Logging
Chong et al. [247] 3 7 3 7 7 7 7 7 7 7 iButton
Sinha et al. [234] 7 3 3 3 7 7 3 3 3 7 TPM
Böck et al. [233] 3 7 ¶ 3 7 3 7 7 7 7 AMD SVM
Nguyen et al. [249] 3 7 ¶ 3 ¶ 7 3 3 3 7 Intel SGX
SGX-Log [250] 3 7 3 3 ¶ 7 3 3 3 7 Intel SGX

EmLog 3 3 3 3 3 3 3 3 3 3 GP TEE

3– Supported; 7– Not supported; ¶– Partially supported; (–) – N/A.

message size. Our test-bed uses a fixed 256-byte text field for each log entry,
which accounts for the broadly similar performance across all datasets. We also
calculated the persistent memory consumption compared with the mean size of
raw logs; the relative consumption is large for small block sizes (m < 250), due
likely to the fixed-size meta-data used by OP-TEE to manage cross-TA secure
storage objects. For larger block sizes, this converges to slightly under five-times
overhead versus raw logs; the absolute size of smaller block sizes remains low,
however, at 16–155 kilobytes, according to Table 5.4.

5.7.2 Related Work Comparison

We compare the features of EmLog’s with previous work in Table 5.5 using
the goals defined in Section 5.3. Notably, the use of ARM TrustZone and the
GlobalPlatform TEE makes it appropriate for mobile and embedded devices
targeted in this work (R10), unlike SGX-based schemes, which are restricted to
Intel CPUs associated with laptop, desktop and server machines. EmLog satisfies
the features of related cryptographic and trust-based proposals, such as resistance
to truncation (R7) and re-ordering (R8) attacks, and public verifiability of log
origin (R6). We also offer forward integrity protection for compromised block
keys (R2) using more sophisticated key derivation, thus moving the cost-reward
ratio further away from an attacker. By avoiding TPMs, however, we relinquish
strong hardware tamper-resistance, and we urge caution of our work in high-
security domains, e.g. military and governmental use, where complex hardware
and side-channel attacks are reasonable threats.
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5.7.3 Limitations Discussion

A major limitation with TEE-based logging systems, as identified by Holt [243],
is when a compromised untrusted world maliciously generates spurious log
messages with the aim of causing a backlog within the TEE, thus giving rise
to Denial of Service (DoS) conditions. That is, the untrusted world generates
more spurious logs than the time taken by the TEE to apply a particular tamper-
resistance algorithm. One potential solution would be to trigger an alarm in
the presence of unusually large numbers of logs, cease the algorithm and alert a
trusted authority over directly from the TEE, e.g. using TLS over the GP Sockets
API [113].

A related attack is when a heavily compromised untrusted world drops all
messages transmitted from the TEE. This could include parameters sent to a
remote network entity to begin a DH-based key exchange for remote log retrieval,
or simply prevents any log entries being transmitted to the TEE. Once again, this
is difficult to defend against with modern TEEs, and we can only identify the
solutions discussed previously in attempting to contact a remote authority and
recording anomalous activity internally.

Thirdly, our implementation used two world context switches per untrusted
world log message. One area of future research would be to buffer some number
d of log messages kept in the untrusted world before initiating the world context
switch to the TEE. This would provide yet another ‘dial’ with which to customise
our proposed scheme; by adjusting d, the number of context switches would be
reduced by a relationship of 1

d , which could significantly increase throughput
(depending on the time needed to perform that switch, which was out-of-scope
in this work). At present, we made a context switch for each log entry from the
untrusted world, i.e. d = 1; our experiments hence represent the ‘worst case’ in
this respect.

Lastly, secure logging schemes suffer from the challenge of log deletion, i.e.
an adversary attempts to delete a substantial subset of logs from the device,
including those with tamper-resistance. This is generally seen to be difficult to
defend against robustly without dedicated WORM (Write-Once, Read-Many)
storage, e.g. CD-ROM [20], [234], [250]. One solution might be to replicate
WORM devices in an attached SE with a trusted path to the TEE, whereby logs
are transmitted to the SE for persistent storage, but naturally requires additional
security hardware. Another solution would be to minimise the number of stored
logs prior to transmission to a trusted authority, who can then identify and
remedy infected devices using an out-of-band method, i.e. in person.
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5.8 Conclusion

This chapter introduced EmLog – a tamper-resistant logging scheme for modern
constrained device using the GlobalPlatform TEE and ARM TrustZone. We began
with a two-part review of related work in Section 5.2 by summarising crypto-
graphic proposals and those reliant upon trusted hardware for tamper-resistant
logging, before formulating the security goals and the threat model in Sections
5.3 and 5.4 based on past work. After this, we introduced the architectural de-
sign and proposed an improved log preservation algorithm for providing public
verifiability of log origin and key exposure resilience. We described the imple-
mentation of EmLog in Section 5.6 and presented indicative performance results
using diverse datasets in Section 5.7. For the first time, our work brings secure,
TEE-based logging to mobile and embedded devices, and protects against strong
software-based untrusted world and network adversaries. Our evaluation shows
that EmLog yields five-times persistent storage overhead versus raw logs for
applying tamper-resistance; runs within reasonable run-time memory constraints
for TEE applications, as stipulated by the Linaro Working Group; and has a
throughput of up to 625 logs/sec. In future work, we aim to investigate the
following:

• Group logging schemes for multiple devices. Extend EmLog to allow secure
and efficient sharing of logs between multiple TEEs. This could be used in
schemes that compute trust scores prior to making group decisions [256],
e.g. authenticating users via contextual data from multiple wearable de-
vices.

• TEE performance comparison. We hope to evaluate EmLog under other TEE
instantiations, namely Intel SGX and other GP-compliant TEEs, such as
TrustTonic’s Kinibi, especially for microcontrollers on low-end IoT devices.
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Chapter 6

Remote Credential Management with
Mutual Attestation for Trusted
Execution Environments

6.1 Introduction

The previous chapters proposed TEEs to provide additional trust and security
assurances to a particular application and its data – continuous authentication
in Chapter 3 and tamper-resistant system logging in Chapter 5 – both under
execution and persistently. This also included the challenge of TEE-to-TEE
communication with the proposal of a secure and trusted channel protocol with
mutual trust assurances in Chapter 4. This chapter expands upon TEE-to-TEE
communication with mutual attestation for addressing the challenges of remotely
managing TEE credentials throughout their lifetimes. These credentials may
be used to authenticate decisions and data originating from the device, such
as sensor measurements collected and transformed by the TEE from on-board
I/O peripherals. In this chapter, we focus on centralised IoT domains where the
application of TEEs is both compelling and justified, such as smart cities and
Industrial IoT (IIoT), where TEE credential management is likely to be prominent.

6.1.1 Motivation

IDC [8] projects that the largest IoT investments in 2016 originated from man-
ufacturing ($178bn), focussing on field servicing and asset management; trans-
portation ($78bn), for monitoring and tracking the conditions and locations of
freight; and utilities ($69bn), for electricity and gas infrastructure monitoring.
Industrial IoT (IIoT) is motivated by the desire for greater automation and more
intelligent fault detection and reporting, and environmental monitoring, like
optimising climate controls to protect goods and maximise energy efficiency. IIoT
also aims to enhance the information provided to decision-makers from factory-
level, ‘on-the-floor’ processes in order to maximise capital and labour allocation.
This is dubbed the ‘fourth industrial revolution’ by the German Industrie 4.0
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initiative [257]. Capgemini recently estimated that IIoT may add up to $1.5tn to
the global economy by 2022 [258].

Moreover, global investment in ‘smart city’ programmes is anticipated to
rise from $80bn to $135bn between 2018–2021 [259]. Smart cities are augmented
urban environments that use measurements from in situ sensing platforms to im-
prove operational efficiency and public safety. In 2014, the Chicago Department
of Innovation and Technology [260] deployed a city-wide network of sensor-
equipped microcontrollers mounted on street lights to monitor carbon monoxide,
nitrogen dioxide and particulate measurements to track air quality and warn
those with respiratory conditions. The State of Gujarat, India, recently trialled
flood predication from measurements collected from river bank sensors, which
alerted citizens of potential floods using automated SMSs, phone calls, and local
sirens [261]. Smart cities also incorporate assisted living for vulnerable users,
e.g. fall detection systems and transmission of pollen warnings [262]; parking
systems that use occupancy sensors to inform local drivers of vacant spaces to
limit congestion [263]; and transport management systems that use occupancy
and location sensors to predict abnormal congestion levels and delays [264].

As we have seen previously, it is the effect of compromised devices used to
monitor and reactively inform larger sensitive processes, such as in manufac-
turing, critical infrastructure and assistive technologies, which raise the gravest
concerns [265]. A compromised sensing device that surreptitiously feeds falsified
measurements, e.g. temperature and battery consumption, to a reactive control
system could conceal abnormal operating conditions and potentially endanger
personnel. Ultimately, this rests in whether devices can be trusted to inform critical
decision-making where malicious data could yield damaging consequences.

Despite widespread availability, managing IoT TEE credentials throughout
their life-cycle has received limited attention. Such credentials may be used
to authenticate and securely report measurements – typically taking the form
of a certificate, or in user-authentication of device handlers using biometrics
or passwords. Challenges arise when credentials require migrating, revoking,
updating or backed up in a secure and trusted manner, such as in safely migrating
device credentials to a replacement model that supersedes it.

All of these issues are compounded by that large numbers of TEEs, potentially
thousands in IIoT and smart city deployments, must be administered, thus limit-
ing the feasibility of human intervention.Furthermore, IoT systems may contain
heterogeneous TEEs: Intel SGX, as we have seen, is restricted to Intel CPUs on
more powerful devices, while ARM TrustZone is better suited to constrained
devices with ARM SoCs, such as microcontrollers and SBCs. To avoid disclos-
ing credentials to potentially untrusted elements, managing credentials between
TEE-enabled devices, such as in migration, ought to be conducted such that both
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end-points are authenticated and attested by one another. This may also extend
to backing-up or updating sensitive credentials to a remote sever-side TEE. It
is important that credential management procedures are generic to a particular
underlying TEE implementation, mutually trusted for operations between TEEs,
and verified to assure its correctness. We develop the work from Chapter 4 to
expand our proposed mutual attestation protocol to facilitate a range of remote
credential management operations between TEEs.

6.1.2 Contributions

For the first time, we analyse and address four critical challenges when man-
aging heterogeneous TEE credentials over its lifetime with bi-directional trust
assurances for remote migration (Section 6.4), revocation (Section 6.5), backups
(Section 6.7), and updates (Section 6.6). We also show how secure log retrieval
– developing work from Chapter 5 – can be realised with mutual attestation
in Section 6.8. We focus principally on centralised deployments comprising a
Trusted Service Manager (TSM) – a trusted third-party that manages credentials,
as per the GlobalPlatform specifications [115] – and where the application and
cost of maintaining TEEs on constrained devices is compelling and justified, e.g.
IIoT and smart cities. This paper presents the following contributions:

• A detailed analysis and examination of past literature is presented on
four credential management challenges facing the deployment of TEEs in
centralised IoT deployments.

• Five proposed protocols for facilitating IoT TEE credential management.
The protocols are agnostic of the TEE, communication medium, and employ
a Trusted Service Manager (TSM) [115].

• Each proposed protocol is subjected to formal symbolic verification using
the Scyther analysis tool, which found no attacks. We freely release the pro-
tocol verification specifications for further research and analysis, which are
available online at: https://www.dropbox.com/s/uq0hftj6b6c1zux/
remote-credential-scyther-scripts.zip.

This chapter is based on the following on work:

• (In Press) C. Shepherd, R. N. Akram, and K. Markantonakis. “Remote
Credential Management with Mutual Attestation for Trusted Execution
Environments,” Proceedings of the 12th IFIP International Conference on
Information Security Theory and Practice, ser. WISTP ’18, Springer, 2019.

https://www.dropbox.com/s/uq0hftj6b6c1zux/remote-credential-scyther-scripts.zip
https://www.dropbox.com/s/uq0hftj6b6c1zux/remote-credential-scyther-scripts.zip
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6.2 Deploying TEE Credentials

In this section, we state the assumptions regarding the deployment of TEE-
resident credentials. Section 2.4.7 of Chapter 2 described a proposed deployment
model for TEEs within the GlobalPlatform TEE specifications. The reader is
referred to briefly revisit this section in order inform subsequent discussions on
credential management.

Credentials are typically programmed initially into a TEE during systems
integration after the production and delivery of TEE hardware from a silicon ven-
dor. After its deployment, a Trusted Service Manager (TSM) – incorporated into
the device manufacturer or outsourced to a trusted third party – is responsible
for maintaining the TEE, its TAs, and any on-board credentials thereafter. Section
2.4.7 of Chapter 2 described how, within the GP TEE model, Security Domains
(SDs) are personalised with keys that authenticate remote TEE management oper-
ations and separate the control of applications under one stakeholder from those
belonging to another. These TEE-specific details are abstracted for the purposes
of this chapter, which aims principally to identify and present generic credential
management protocols that are agnostic to the underlying TEE implementation
and architecture.

At present, the GlobalPlatform management functions govern only the high-
level operational lifecycles of TEE, SD and TA on the device. They do not
concern the way credentials and other data held within TAs is retrieved or
updated, nor how TEEs and TAs operate within specific application scenarios.
Explicitly, the GP TEE TMF specifications state that “an implementation can support
several protocols to fulfil different security constraints, different business needs, or local
rules” [115].

6.2.1 TEE Credential and Profile Management

We define TEE credentials as the set, C, of key material, certificates, and other au-
thentication data contained in a TA. Credentials may also comprise a key derived
from a password-based key derivation function using a password from an op-
erator, or one provisioned later over a secure channel to the TA. They may also
be encapsulated in a model that maps contextual data, like sensor inputs, to
authentication states using machine learning, such as Continuous Authentication
(CA) and other biometrics. Ultimately, these credentials serve as the evidence for
authenticating privileged operations to a remote party. Secure Elements (SEs),
e.g. Universal Integrated Circuit Cards (UICCs), are another means for applica-
tion and credential hosting on constrained devices. The reader is referred back
to Chapter 2 in which a detailed comparison of secure and trusted execution
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technologies was presented, including a feature comparison and their capability
against various adversaries.

6.3 Protocol Design

The GP Trusted Management Framework (TMF) does not stipulate specific secure
channel protocols, but only that the TSM and TEE should mutually authenticate
over a channel that preserves the “integrity and the confidentiality of the exchanges,”
and addresses replay attacks against a Dolev-Yao adversary [115]. These basic
requirements omit desirable features identified in existing trusted computing
literature [266], [267], such as trust assurances that the target TEE is authentic
and integral. As discussed in Chapter 4, this is usually realised using remote
attestation where system measurements, e.g. bootloader and TA binaries, are
measured by a trusted entity. RA protocols authenticate the platform to a remote
verifier using these measurements. In sensitive IoT deployments, mutually
authenticating both end-points may be desirable, e.g. TEE-to-TEE communication
for securing backups from a GP TEE to a cloud-based backup enclave using Intel
SGX. Here, RA protocols can be conducted on each end-point or using a mutual
attestation protocol, as proposed in Chapter 4.

In this work, we maintain trust assurances by only transmitting credentials
between the TEEs and/or a TSM, without revealing them to any untrusted de-
vice elements over a network We also introduce an abstract controller, a generic
IoT Controller (IC), with which the host edge device may communicate with
the IoT deployment network, is issued management commands, performs fire-
walling, device blacklisting and routing with other devices e.g. on a local- (LAN),
metropolitan (MAN) or wide-area network (WAN). We now explicitly state the
protocol features we aim to achieve, which are sourced from related mutual attes-
tation literature [266], [267] (see Section 4.4 of Chapter 4), and the requirements
stipulated by the GlobalPlatform TMF specification [115]:

S1) Mutual key establishment: a shared secret key is established for communica-
tion between the two entities.

S2) Forward secrecy: the compromise of a particular session key should not
affect previous protocol runs.

S3) Trust assurance: the proposal shall allow third-parties to verify the TEE’s
integrity post-deployment to provide assurances that credentials were
sourced from an integral and authentic platform.

S4) Mutual trust verification: both end-points shall successfully attest the state
of the other before permitting the establishment of a secure channel.
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S5) Mutual entity authentication: each communicating end-point shall authenti-
cate the other’s identity to counter masquerading attempts.

S6) Denial of Service (DoS) resilience: resource allocation shall be minimised at
both end-points to prevent DoS conditions from arising.

S7) Key freshness: the shared key shall be fresh to the session in order to prevent
replay attacks.

F1) Avoidance of additional trust hardware: the protocol shall avoid the need for
additional security hardware, e.g. TPMs and SEs, other than the TEE.

F2) TEE-agnostic: the protocols shall remain agnostic of the underlying TEE
architecture to facilitate interoperability.

To be clear, we assume the same threat model defined in Section 4.4.1 of
Chapter 4 to apply when conducting communications between TEEs on remotely
located devices.

6.3.1 Setup Assumptions

A public-key infrastructure is assumed in which a trusted CA issues certificates
to the TSM, TAs, and the backup (BA), revocation (RA) and maintenance (MA)
authorities – developed in the forthcoming sections – for managing backups,
revoking credentials and physically maintaining devices respectively. The initial
TA certificates are assumed to be securely provisioned before deployment to
the host device. The TEE itself is assumed to be trusted and to possess certified
device-specific attestation and command keys for signing attestation responses.

The credentials are also assumed to be securely stored by the TEE, e.g. using
the sealing abstraction with a device-specific storage root key (as stipulated by
the GlobalPlatform TEE PP, see Section 2.4.7 in Chapter 2). Secure means of key
generation, derivation and random number generation is also assumed. Note
that many TEEs cannot initiate network connections, and must rely on the untrusted
OS – the Rich Execution Environment (REE) – to implement such interfaces, e.g.
TCP/IP sockets. GP TEEs may perform this via the GP Sockets API [113], but it
is not generalisable to Intel SGX. We illustrate the REE throughout this paper in
the proposed protocols, but it may be omitted for TEEs with direct networking
capability.

6.4 Migration

TEE migration is the process of transferring and re-provisioning credentials from
TAA to TAB between distinct TEEs. In IoT, migration is beneficial in preserving
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credentials during a device replacement or relocation, where credentials can
be securely transferred to other units without incurring reinitialisation costs.
This is likely to occur if a device is replaced by a successor model, i.e. due to
obsolescence, potentially in a separate physical location. Migrating credentials
across TEEs has already attracted some attention in related literature [268], [269].
We summarise these schemes and their contributions.

6.4.1 Related Work

Arfaoui et al. [268] present a privacy-preserving protocol for migrating credentials
between GlobalPlatform TEEs. A PKI-based protocol is proposed for authorising
the credential transfer between the TEE, TSM and the TEE’s service providers,
each of whom controls a set of TAs in a Security Domain (SD). After authorisation,
a second protocol is used to transfer data between the SDs by each service
provider using a PKI- or password-based authenticated key exchange. Both
protocols are subjected to formal verification using the AVISPA analysis tool.
While the authors note the importance of remote attestation during TSM-TEE
authorisation, it is not presented or verified as part of the protocol; it is also
omitted during the credential transfer process between the TEEs. Moreover,
mutual trust assurances between the TSM and the TEEs is not discussed.

Kostiainen et al. [269] tackle migration for TEE open credential platforms
where service providers can provision arbitrary credentials for, for example, virtu-
alised access control cards. They propose encrypting and backing-up credentials
on a trusted server using a tokenised password known only to the user. The cre-
dentials are migrated by re-entering the password, which is re-tokenised on the
receiver device, and transmitted and verified by the backup server that releases
the encrypted credentials. Similar to [268], the proposal lacks trust assurances
between the TSM and both TEEs.

6.4.2 Proposed High-level Migration Procedure

Credentials must be deleted on the device from which they are migrated, while
transferring them over a secure channel with mutual trust assumptions between
TAA and TAB , which is absent in existing literature. In Figure 6.1, we show
how migration can be performed between two disparate TAs, accounting for the
shortcomings in related work; the messages are described as follows:

1. A mutual remote attestation protocol, such as BTP proposed in Chapter
4, is executed between TSM and TAA to bootstrap a secure and mutually
trusted channel (STCP).

2. TSM transmits the begin migration command to TAA.
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FIGURE 6.1: Proposed TEE credential migration procedure.

3. TAA unseals the credentials from its secure storage for transmission.

4. TAA acknowledges to TSM that the credentials were unsealed successfully.

5. A separate STCP instance is executed between (TSM,TAB).

6. TSM sends a message to TAB to prepare for credential/profile (re-)provisioning.

7. TAB acknowledges to TSM that it is ready to receive credentials.

8. TSM transmits the ID of TAB to TAA to which to transmit its unsealed
credentials.

9. An STCP is formed using mutual remote attestation between TAA and
TAB .

10. The credential transfer occurs between TAA and TAB .

11. The transferred credential is provisioned into the secure storage of TAB .

12. TAB acknowledges its credential re-provisioning success to TSM .

13. TSM instructs TAA to delete its credentials.

14-15. TAA deletes the migrated credential and acknowledges its success TSM .

6.4.3 Discussion

The high-level procedure uses three secure and trusted channels (STCPs) with
mutual attestation between (TSM,TAA), (TSM,TAB) and (TAA, TAB), thus
addressing the absence of trust assurances in existing schemes. The proposal
also avoids unnecessarily exposing credentials to the TSM by transmitting data
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directly between the mutually authenticated TAs. Both ICs require no additional
cryptographic operations and act only as switches for communicating the pro-
tocol messages to the correct IoT device in its intended. Implicitly, the protocol
avoids specifying TEE-specific functionalities. Rather for F2 (TEE agnosticism),
we abstract the protocol appropriately to allow migrations between heteroge-
neous TEEs by allowing either a GP TEE application or Intel SGX enclave to act
as either TA. For TEE-specific implementation guidance, the reader is referred
to existing work such as the GlobalPlatform TMF specifications [115], and the
work by Arfaoui et al. [268] for managing and authorising SDs on the GP TEE. In
Section 6.9, we specify the protocols and procedures formally, and detail an en-
hanced mutual attestation protocol for STCP for satisfying the remaining features
listed in Section 6.3.

Atomicity

Credential migrations should be atomic to preclude the rise of data consistency
issues, particularly to prevent credential loss and unintended duplication. For
instance, if party A transmits its credential, c, and deletes it before being success-
fully re-provisioned by party B, e.g. due to a software failure or by an adversary
who drops messages containing c before reaching B, then c becomes lost. A
related issue occurs when A transmits c to B, who successfully re-provisions it,
but A subsequently fails to delete c locally. In this case, c is now unintendedly
replicated across two locations. A further is trusting whetherA andB actually did
delete and re-provision the credential respectively, and not just to have claimed
so.

In the presented procedure, the deletion of c held by TAA (stage 14 in Figure
6.1) is performed iff the credential was successfully transferred and subsequently
re-provisioned by TAB beforehand (stages 10-12). For the first two challenges,
it is critical for TSM to be aware of the re-provisioning (stage 12) and deletion
success messages (stage 15), and remedial action ought to be taken if either
message is not received after an acceptable time limit. This includes voiding and
attempting to repeat the procedure – valid up to stage 13, after which the initial
credential may already be deleted by TAA – or triggering manual intervention to
investigate a potential networking or hardware failure on either device.

The case of verifying whether the parties do, indeed, delete and re-provision
credentials is more difficult. In this work, we assume that the TEE and TA code
would be subjected to rigorous testing and development practices to correctly
delete and re-provision credential material at the appropriate stages of the proto-
col. Additionally, remote attestation is used by all parties to gain evidence about
the state of the target TEE with whom it is communicating. Ideally, as noted
by Kostiainen et al. [269], credentials should be managed on a trusted storage
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medium accessible only to the TEE, i.e. replay-protected non-volatile memory or
a secure element, which is the case we assume in this work.

6.5 Revocation

Credentials may be revoked if they reach the end of their predefined lifespan(s),
as part of a key rotation policy; if the OEM discovers a vulnerability in the TA or
TEE kernel code, and the credentials were potentially compromised; or the device
is retired from service. As discussed in Section 6.2.1, compromised IoT credentials
could be abused to authenticate malicious decisions and data; revocation is vital
in preventing compromised devices from influencing larger critical processes.

6.5.1 Related Work

Revocation has been previously studied in TPM and smart card literature. Chen
and Li [270] address credential revocation in Direct Anonymous Attestation
(DAA), as used in TPM 2.0. DAA, like group signatures, allows the signer
to demonstrate knowledge of its individual private key corresponding to the
group’s public key without revealing its identity. Revoking DAA credentials is
challenging as the signer’s identity is not revealed, even to the group manager
with the group key. The authors review two solutions: rekey-based, where the
issuer updates its public key (which may or may not include its correspond-
ing secret key), and allows only legitimate non-revoked signers to update their
credentials; and Verifier-Local Revocation (VLR), where the verifier inputs a revoca-
tion list, RL, to the DAA’s verification function and accepts only signatures from
signers, S /∈ RL.

Lueks et al. [271] address revoking attribute-based credentials (ABCs) for
smart cards anonymously. A Revocation Authority (RA) possesses a revocation
list (RL) of anonymous revocation values, grε,v, submitted by the user or verifier
(user- and system-instantiated revocation), where r is the revocation value in the
user’s credential. A revocation ‘epoch’, ε (corresponding to a time period) is used
to provide unlinkability by re-computing and re-sending the new valid RLs to
the verifiers at each epoch; that is, RLε,V = sort({grε,V | r ∈MRL}), where MRL

is the master revocation list. Using bloom filters, this occupies only 4–8MB for
221 revoked credentials depending on the probability tolerance.

Katzenbeisser et al. [272] propose revocation for TPM 1.2 using blacklisting
and whitelisting. Blacklisting orders revoked keys into a hash chain, where
the final hash value, h, is stored in a TPM register. When a key is revoked, a
new hash entry is created and the TPM updates h accordingly. Before loading a
key, the TPM tests whether it is in the blacklist before unsealing it. Whitelisting
incrementally creates keyed hashes of each permitted key with the value of the
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TPM’s internal secure counter as the whitelist’s ‘version’. A key is valid iff the
keyed hash counter value matches the TPM’s internal counter. Revocation is
performed by incrementing the TPM’s counter and updating all non-revoked
hashes with the new value.

6.5.2 Proposed High-level Revocation Procedure

Privacy-preserving credential schemes, e.g. DAA and anonymous credentials, are
beneficial in verifying credentials without divulging users’ identities. However,
the focus of this work is on inherently centralised IoT deployments, such as smart
cities and IIoT architectures, where the concern of violating credential privacy
has far fewer consequences than government electronic ID cards or TPMs on
consumer devices. Relaxing this constraint provides us with some headway
to pursue simpler, PKI-based solutions for providing a baseline protocol for
TEE credential revocation with mutual attestation. Moreover, we discuss two
approaches for IoT based on blacklisting and whitelisting using a trusted RA.
The procedure is illustrated in Figure 6.2 and described as follows:

1. TA and TSM form a STCP using mutual remote attestation to verify the
platforms’ integrity and authenticity.

2. TSM instructs TA to reveal the current credentials in use, C, which are
then unsealed from storage, e.g. encrypted in untrusted storage or an SE.

3. C is transmitted to the TSM over the STCP.

4. The TSM forms a STCP with the revocation authority, RA, who maintains
the master revocation list of whitelisted or blacklisted credentials.

5. TSM submits C to RA, who returns a list of the revoked credentials in C,
i.e. RC ⊆ C, from its master revocation list (MRL).

6. RA returns the revoked credentials, RC, to TSM .

Next, if RC is not empty, the TSM informs IC of the credentials to disallow
in future transactions. The TSM also instructs the TA to update the revocation
status of RC ∈ C internally to prevent further use. Note that a malfunctioning
device may fail to update this status and reuse revoked credentials. The use of
revoked credentials should be reported to MA responsible for decommissioning
compromised devices. Like [271], delegating revocation list management to
RA removes the burden of potentially multiple verifiers synchronising a single
list. The TSM can submit a lookup request to the RA, who queries the blacklist
or whitelist in O(1) using an associative array. Traditional revocation schemes,
e.g. PKI certificate revocation, use blacklisting. The RA maintains a master
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FIGURE 6.2: Proposed high-level credential revocation procedure.
*8a. STCP between IC and TSM is unnecessary if the route is considered

trustworthy.

revocation list (MRL) of revoked credentials that should not be used in any IC
transaction; the MA may submit credentials it wishes to revoke to RA (maintainer-
instantiated revocation). RA checks the revocation status of C by verifying C /∈
MRL. Whitelisting, conversely, comprises a list of only the permitted credentials.
A credential is revoked by removing it from the whitelist and, if applicable,
updating the list with its replacement. Revocation is tested by verifying C ∈
MRL. The use of blacklists and whitelists is context-specific; whitelisting may
be preferred over blacklisting when the valid credential set is small and changes
infrequently.

6.6 Updates

Remotely updating IoT credentials is beneficial during routine renewal schedules,
e.g. X.509 certificates that reach their validity expiry date; replacing a revoked
credential after, for example, the detection of a compromise; or the device is
relocated and the organisational unit to which the credential is issued is no longer
valid. Generally, credential update is the process of securely replacing an obsolete
credential, ci, with a newly issued c′i. Once replaced, ci should be revoked
to prevent the re-use of obsolete credentials. Little work has been conducted
academically for updating TEE credentials; this is likely due to the the simplicity
of a TSM creating a secure channel and modifying the credential or, indeed,
the similarity with restoring backups. Updates can be considered a variation
of backup restoration where c′i is retrieved from a trusted server, rather than ci



6.6. Updates 167

FIGURE 6.3: Proposed credential update procedure with mutual
attestation.*11. (MA,RA) STCP is unnecessary if the route is

trustworthy.

registered by the user. Revoking ci, achievable using the process described in
Section 6.5.

6.6.1 Proposed High-level Update Procedure

We reintroduce the maintenance authority (MA) from Section 6.5, which issues
credential updates, e.g. as part of a rotation policy and/or recognising potentially
comprised devices/credentials. If desired, the MA is also responsible for regis-
tering obsolete credentials with the revocation authority (RA). The high-level
update mechanism is as follows:

1. TSM establishes an STCP with MA, who procures and provides the neces-
sary credential updates.

2. MA notifies the TSM of an updated credential. This may include identities
of which TEEs need updated or, indeed, all TEEs.

3-4) An STCP is conducted between (TSM,TA), and transmits an update prepa-
ration command to TA.

5) TA is locked, i.e. prevented from interacting with the REE, until the update
is performed to prevent using outdated credentials.

6) TA acknowledges to TSM that it is ready to update.

7-8) TA establishes a STCP with MA to receive the update, and MA transmits
the updated credential, c′i, to TA.
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9) TA seals c′i to its secure storage for future use; ci should be deleted internally
before unlocking.

10) TA acknowledges to MA that c′i was initialised successfully.

11-13) (MA,RA) use an STCP to white/blacklist obsolete credential ci.

6.7 Backup

Backup is the process of securely retrieving the set of credentials, C, belonging to
a TA for remote storage. In standard security practice, backups often form the
cornerstone of a disaster recovery plan – as stipulated by ISO 27001:2013 [232]
– for recovering data from corruption and accidental deletion. Backups may
also constitute part of a data retention policy, where device data is copied for
local analysis and evidence of regulatory adherence. Like migration, the cre-
dential/profile backup is beneficial in IoT if the original was entered by hand
(human input), e.g. password, or derived from a trained machine learning model,
e.g. behavioural biometrics, which is time-consuming to retrain. The restoration
of backups can be addressed using the Remote Update protocol proposed in
Section 6.6. Next, we examine related work in the backup of remote credentials
aboard secure and trusted execution technologies.

6.7.1 Related Work

Kostiainen et al. [273] address TEE credential backup, restoration and disabling
on consumer mobile phones, and propose two solutions. The first uses a SE,
a SIM card, where the TEE credentials are protected under a SIM-specific key
provisioned by its provider. This allows the user to uninstall a familiar hardware
element, i.e. the SIM, before releasing the device for repairs or to lend to an
untrusted user. Upon reinserting the SIM, an on-board TEE credential manager
is used to decrypt and re-initialise the encrypted credentials. The second solution
involves the use of a removable microcontroller to counter an honest-but-curious
remote server, RS. RS has a shared key Ks with the TEE, and stores the back-
ups using a secure counter for rollback protection. To prevent RS reading the
credentials, the TEE encrypts them under a separate key, K, derived from a local
counter on the microcontroller, and re-encrypts them under Ks.

Akram et al. [274] examine credential restoration for multi-application smart
cards on smartphone SEs. They enhance a Trusted Environment and Execution
Manager (TEM), which dynamically enforces the smart card’s run-time security
policies, to implement credential backup and restoration mechanisms. A Backup
and Restoration Manager (BRM) is added to the smart card software stack that
interfaces with a TEM-resident backup token handler, which stores tokens issued
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by application service providers. The user registers the BRM with a backup
server (BS); when the user wants to backup, the BRM encrypts the token(s) and
communicates them to BS. To restore data, e.g. to a new card, the user provides
the BRM with his/her BS credentials to download the backed-up tokens. A secure
channel is formed and the token(s) authenticate the credential restoration from
the service provider(s).

6.7.2 Proposed High-level Backup Procedure

We introduce a trusted Backup Authority (BA) responsible for storing retrieved
credentials. This may be a cloud-based storage provider or Hardware Security
Module (HSM) possessed by the credential issuing authority. The precise means
by which the BA securely stores credentials is considered out-of-scope in this
work. The proposed procedure between the target TA and BA is shown in
Figure 6.4 and described below:

1-4) TSM and BA establish a secure and trusted channel with mutual attesta-
tion, and TSM requests BA to prepare for backup.

5-6) TSM forms an STCP with TA, commanding it prepare the credentials
for remote backup. TSM provides the identity of BA that performs the
backup.

7-8) TA unseals the credentials to transmit to BA, and notifies TSM that they
were unsealed successfully.

9-12) TA and BA form a STCP over which C is transmitted and stored securely
by BA. While TSM is considered trusted, the direct connection between
TA and BA mitigates the risk of unnecessary credential exposure to TSM .

13) BA notifies TSM that TA was backed-up successfully.

6.8 Secure Log Retrieval

This section develops work presented in the previous chapter, Chapter 5, on
tamper-resistant system logging on constrained devices with TEEs. Recording
system attributes, such as error details, user activity and potential security events,
often underpin underpin audit and after-the-fact forensic investigations. As we
seen, logs are also used to enforce user accountability, event reconstruction and
intrusion detection, and are routinely targeted by attackers to conceal wrongdo-
ing. However, while a wealth of literature exists for producing tamper-resistance
records, little research examines the secure and trustworthy transmission of logs.
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FIGURE 6.4: Proposed high-level remote credential backup proce-
dure.

6.8.1 Proposed High-level Audit Log Transmission Procedure

Most schemes, e.g. Böck et al. [233] and Sinha et al. [234], stipulate the use of a
secure channel, such as TLS, while Karande et al. [250] and our contribution in
the previous chapter proposed one-way and mutual remote attestation channels
respectively. However, we did not formalise nor verify this retrieval process
explicitly. In this section of this chapter, we address this shortfall by proposing a
log transmission protocol in the context of centralised IoT deployments. To this
end, we propose a secure and mutually trusted log retrieval process, as shown in
Figure 6.5. It is identical in function to the Remote Backup procedure described in
Section 6.7 and Figure 6.4, but the role of the Backup Authority (BA) is replaced
with an Auditing Authority (AA) with the capacity to store, process and analyse
the transmitted logs. We refer the reader to Section 6.7.2 for a more detailed
analysis of this procedure.

6.9 Procedure Analysis

We formalise the procedures from those presented in the previous sections, which
are listed in Procedures 1 to 5 using the notation from Table 6.1. In Section
6.3.1, we outlined the set-up assumptions behind the proposals, such as key
establishment, which we refer to frequently in Sections 6.9.1 and 6.9.2, which
present high-level and formal protocol analyses using Scyther respectively.
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FIGURE 6.5: Proposed high-level audit record transmission proce-
dure.

6.9.1 High-level Analysis

Each proposed procedure is underpinned by a variant of the mutual remote
attestation protocol proposed in Chapter 4. This protocol (Protocol 6), which
establishes a TEE-to-TEE secure channel, is modified to support authenticated
encryption with associated data (AEAD). AEAD instantiations, namely as AES
in GCM mode, exhibit a 2-3 times performance benefit over AES + HMAC-SHA
constructions [275], [276]. This is opposed to our previous proposals in Chapter
4 that considered AES in a non-AEAD mode of operation, e.g. AES-CBC, with
an additional HMAC tag for confidentiality, integrity and data authenticity. The
theoretical security of AES-GCM is well-understood [277]. Practically, it also
reduces the number of GP Internal API [86] calls substantially, from eight calls for
HMAC-SHA+AES, to only four GP TEE API calls, thus reducing the protocol’s
implementation complexity.

This modified BTP forms the basis for establishing the trust relationships
between the TEEs, which was outlined in the security goals in Section 6.3. The
protocol is based on ephemeral Diffie-Hellman key agreement, thus achieving
session forward secrecy (S2), mutual key establishment (S1) and key freshness
(S7). Additionally, the protocol conducts mutual attestation using the quoting
abstraction for verifying the target platform’s integrity and authenticity, which
satisfies S3 and S4 (mutual trust verification). The assumption of PKI and the
provisioning of key pairs to sign attestation values, command instructions, e.g.
Prep_Backup and Revoke_Success, and the shared secret, provides mutual en-
tity authentication (S5).

The protocols avoid the use of additional trusted hardware for constrained
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Procedure 1 Proposed Migration Procedure with BTP (MP-BTP)

1: Execute BTP (TSM , TA1)
2: TSM → TA1 : [(Prep_Migrate || XTSM )σTSM ]AEK

3: TA1 → TSM : [(TA1_Ack || XTA1)σTA1]AEK

4: Execute BTP (TSM , TA2)
5: TSM → TA2 : [(Prep_Migrate || X ′TSM )σTSM ]AEK′

6: TA2 → TSM : [(TA2_Ack || X ′TA2)σTA2]AEK′

7: TSM → TA1 : [(IDTA2 || XTSM )σTSM ]AEK

8: Execute BTP (TA1, TA2)
9: TA1 → TA2 : [(C || X ′′TA1)σTA1]AEK′′

10: TA2 → TA1 : [(Stored_C_Ack || X ′′TA2)σTA2]AEK′′

11: TA2 → TSM : [(TA2_Done || X ′TA2)σTA2]AEK′

12: TSM → TA1 : [(Delete_Creds || XTSM )σTSM ]AEK

13: TA1 → TSM : [(TA1_Done || XTA1)σTA1]AEK

Procedure 2 Proposed Backup Procedure with BTP (BP-BTP)

1: Execute BTP (TSM , BA)
2: TSM → BA : [(Prep_Backup || XTSM )σTSM ]AEK

3: BA→ TSM : [(BA_Ack || XBA)σBA]AEK

4: Execute BTP (TSM , TA)
5: TSM → TA : [(Prep_Backup || X ′TSM )σTSM ]AEK′

6: TA→ TSM : [(TA_Ack || X ′TA)σTA]AEK′

7: TSM → TA : [(IDBA || XTSM )σTSM ]AEK

8: Execute BTP (TA, BA)
9: TA→ BA : [(C || X ′′TA)σTA]AEK′′

10: BA→ TA : [(Backup_Ack || X ′′BA)σBA]AEK′′

11: BA→ TSM : [(Backup_Done || X ′BA)σBA]AEK′

Procedure 3 Proposed Revocation Lookup Procedure with BTP (RL-BTP)

1: Execute BTP (TSM , TA)
2: TSM → TA : [(Reveal_Creds || XTSM )σTSM ]AEK

3: TA→ TSM : [(C || XTA)σTA]AEK

4: Execute BTP (TSM , RA)
5: TSM → RA : [(Lookup || C || X ′TSM )σTSM ]AEK′

6: RA→ TSM : [(Revoked || RC || X ′RA)σRA]AEK′

If RC 6= ∅:
7: TSM → TA : [(Revoke || RC || XTSM )σTSM ]AEK

8: TA→ TSM : [(Revoke_Ack || XTA)σTA]AEK

9: (Optional) Execute BTP (TSM , IC)
10: TSM → IC : [(Revoke || RC || X ′′TSM )σTSM ]AEK′′

11: IC → TSM : [(Revoke_Ack || X ′′IC)σIC ]AEK′′

Procedure 4 Proposed Revocation Reporting Procedure with BTP (RR-BTP)

1: Execute BTP (MA, RA)
2: MA→ RA : [(Revoke || C || XMA)σMA]AEK

3: RA→MA : [(Revoke_Ack || XRA)σRA]AEK

4: If reported credentials (RepC 6= ∅):
RA→MA : [(Report || RepC || XRA)σRA]AEK
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Procedure 5 Proposed Update Procedure with BTP (UP-BTP)

1: Execute BTP (MA, TSM )
2: MA→ TSM : [(Update_Ready || XMA)σMA]AEK

3: TSM →MA : [(TSM_Ack || XTSM )σTSM ]AEK

4: Execute BTP (TSM , TA)
5: TSM → TA : [(Prep_Update || X ′TSM )σTSM ]AEK′

6: TA→ TSM : [(TA_Ack || X ′TA)σTA]AEK′

7: Execute BTP (TA, MA)
8: TA→MA : [(Get_Update || X ′′TA)σTA]AEK′′

9: MA→ TA : [(new_cj || X ′′MA)σMA]AEK′′

10: TA→MA : [(New_Cred_Ack || X ′′TA)σTA]AEK′′

11: Execute BTP (MA, RA)
12: MA→ RA : [(Revoke || ci || X ′′′MA)σMA]AEK′′′

13: RA→MA : [(Revoke_Success || X ′′′RA)σRA]AEK′′′

Protocol 6 Modified Bi-directional Trust Protocol (BTP) from Chapter 4

1: A→ B : IDA || IDB || nA || gA || ARB
2: B → A : IDB || IDA || nB || gB ||

[
(XB)σB || (VB)σB

]
AEK

|| ARA
XB = H(IDA || IDB || gA || gB || nA || nB)
VB = QB || nB || nA

3: A→ B : [ (XA)σA || (VA)σA ]AEK

XA = H(IDA || IDB || gA || gB || nA || nB)
VA = QA || nA || nB

TABLE 6.1: Protocol notation.

Notation Description

TSM TEE trusted service manager.
RA Revocation authority.
MA Device maintenance authority.
TAX TEE trusted application on device X .
ICX Abstract IoT controller X .
nX Secure random nonce generated by X .
H(D) Secure one-way hash function, H , on D.
X → Y Message transmission from X to Y .
IDX Identity of X.
A || B Concatenation of A and B.
gX Diffie-Hellman exponentiation of X .
ARX Attestation request on target entity X .
QX Attestation quote from TEE X .

(A)σX
Signed message A from X under a private-
public key-pair (K,P ).

[m]AEK

Message m is encrypted using authenticated
encryption under session key K derived from
the protocol’s shared secret.

D′ Data specific to a separate session to D.
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IoT devices, such as TPMs, secure elements and smart cards by focusing on TEEs,
which may be implemented using the GlobalPlatform TEE and ARM TrustZone
on all Cortex-A and M chipsets (F1). The protocols are designed to incorporate
abstract TAs, which are verified using the quoting abstraction, whether they be
Intel SGX enclaves of GP TEE TAs, thus providing TEE agnosticism (F2). Note,
however, that this abstracts away the precision of related work, e.g. Arfaoui et
al. [268], which addresses migration specifically in the context of the GP TEE. Such
work incorporates GP TEE-specific entites, such as security domains (SDs) and
root SDs, which do not exist on Intel SGX or earlier TPM-based TEEs, like Intel
TXT [278]. As such, users of this work should be aware of the implementation
specifics when deploying these protocols. We refer readers to [268] and [115] for
guidance for GP TEEs, and [118] for Intel SGX.

6.9.2 Symbolic Verification

As we introduced in Chapter 4, Scyther is a protocol verification tool presented
by Cremers [163] for assuring correctness using symbolic analysis. This was
re-employed to verify the protocols proposed in this chapter; we refer the reader
back to Section 4.5.4 of Chapter 4 for a description of Scyther. We analyse all
protocols using the default Dolev-Yao adversarial model, between TA1, TA2
and the TSM for migration; TA, TSM and BA for backup; TA, TSM and RA for
revocation lookup and MA and RA for revocation reporting; TA, MA, RA and
TSM for updates; and re-verifying the modified BTP with AEAD between TA1
and TA2. The protocols are modelled under the multi-protocol setting offered
by Scyther for evaluating procedures comprising sub-protocols. We see, for
instance, that BP-BTP (Protocol 2) contains BTPs executed between (TSM,BA),
(TSM,TA) and (TA,BA). Multi-protocol analysis in Scyther accounts for attacks
that, for example, replay messages between (TSM,BA) to (TA,BA) and vice-
versa, across all sub-protocols of a given procedure.

To be clear, we assume a uniform threat model between entities in the sub-
protocols, i.e. the interactions between (TA1, TA2) for credential migration is
analysed under the same adversarial model as, for example, (TSM,BA) in the
backup procedure. In other words, the same Dolev-Yao adversarial model is used
to analyse all sub-protocols; however, in reality, the roles of BA, RA, TSM and
MA are likely be served by one or more trusted organisations over a network
subjected to more rigorous security controls, such as enterprise firewalls and
frequent inspection. This is opposed to two devices communicating in the field
over a more uncontrolled network topology, as we assume with (TA1, TA2). In
short, we assume the worst case that the network between all communicating
parties is untrusted.
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Like Chapter 4, we used Scyther to test the secrecy of transmitted quotes from
each party in each procedure and corresponding sub-protocols, e.g. (Secret,
qta1) and credentials (Secret, c); aliveness (Alive); replay protection, i.e.
non-injective agreement (Niagree) and non-injective synchronisation (Nisynch),
as defined in [163]; session key secrecy (SKR, K); and the reachability of all enti-
ties, e.g. (Reachable, TA). Scyther found no attacks on any procedure under a
Dolev-Yao adversary. However, we urge the reader to be mindful of the limita-
tions of verification tools, as set out in Section 4.5.4 of Chapter 4.

The Scyther specifications for each protocol are also released for further
scrutiny1. Note that the entities tested in our procedures are considered to be
trusted, i.e. not compromised. TEEs are inherently designed against complex,
potentially kernel-level adversaries – for a detailed review of the threats that
a TEE defends against, the reader is referred back to Section 2.4.7 in Chapter
2 – which also includes the TEEs we assume to be in operation by the backup,
revocation and maintenance authorities, and the TSM.

6.10 Conclusion

In this chapter, we presented the first investigation into secure and trusted remote
TEE credential management on constrained devices using mutual attestation.
This resulted in the proposal of a suite of protocols for supporting secure remote
migration, revocation, backups, and credential updates. This work is a development
of the ideas and challenges of mutual attestation (Chapter 4), and we demon-
strated in Section 6.8 how it can be applied to secure and mutually trusted log
retrieval from work in Chapter 5. After summarising TEE credential deployment
in Section 6.2, we formalised the threat model, security goals and assumptions for
a typical centralised IoT TEE credential deployment in Section 6.3. For each man-
agement challenge, we reviewed the state-of-the-art before proposing procedures
and protocols for securely realising these notions using mutual attestation. The
protocols were subjected to formal symbolic verification using Scyther, which
found no attacks under the Dolev-Yao adversarial model. We publicly release the
verification scripts for further research and scrutiny (see Section 6.1.2).

6.10.1 Future Work

While we evaluated the performance of the core protocol in Chapter 4 for boot-
strapping a secure and mutually trusted channel for underpinning the remaining
proposed procedures, it would be worthwhile to implement and evaluate the
procedures in this chapter in an emulated IoT environment with multiple devices.

1Protocol specifications available online at: https://www.dropbox.com/s/
uq0hftj6b6c1zux/remote-credential-scyther-scripts.zip

https://www.dropbox.com/s/uq0hftj6b6c1zux/remote-credential-scyther-scripts.zip
https://www.dropbox.com/s/uq0hftj6b6c1zux/remote-credential-scyther-scripts.zip
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A particularly useful endeavour in future research would be to evaluate each
protocol on a range on various platforms, from MCUs to higher-end SBCs, using
heterogeneous TEEs. A related task would be to implement and evaluate alter-
native wireless mediums common in IoT deployments, such as ZigBee, LoRa,
Bluetooth and 802.11 Wi-Fi, for identifying any potential latency challenges.
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Chapter 7

On the Effectiveness of Sensor-based
Proximity and Relay Attack Detection
Mechanisms for NFC Transactions

The previous chapters principally considered applications of TEEs and proposed
a number of protocols, procedures and systems that support those applications.
In this chapter, we explore the application of TEEs in protecting the credentials
used in NFC-based contactless transactions and their vulnerability to relay at-
tacks. Relay attacks stem from the absence of proximity assurances in the NFC
specifications, i.e. whether two devices really are within the intended operating
distance (less than 5cm). We examine the current state-of-the-art of relay attacks
and re-evaluate the efficacy of proposed sensor-based mechanisms for detecting
them under the conditions actually stipulated by industry.

7.1 Introduction

Near-Field Communication (NFC) [279] and Host Card Emulation (HCE) [119]
– discussed in Section 2.2.5 in Chapter 2 – have opened mobile platforms to
application domains that were previously instantiated using smart cards. This
has led to the development of the use of smartphones in a range of services,
such as payments, transportation and access control – exemplified by Google
Pay1, Apple Pay2 and Samsung Pay3 as three widely-deployed systems. Deloitte
estimated that 5% of the 600-650 million NFC-enabled mobile phones were
used at least once a month to make a contactless payment globally in 2015
[280]. In the same year, 12.7% of smartphone users in the USA were actively
using contactless mobile payments according to Statista, while the value of
such transactions is projected to grow by two-thirds in the next three years
alone: from $114 billion (USD) in 2018 to $190 billion (USD) in 2021 [281]. It is
projected that 2018 will see approximately 166 million NFC mobile payment users

1Google Pay: https://pay.google.com/
2Apple Pay: https://www.apple.com/uk/apple-pay/
3Samsung Pay: https://www.samsung.com/uk/samsung-pay/

https://pay.google.com/
https://www.apple.com/uk/apple-pay/
https://www.samsung.com/uk/samsung-pay/
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worldwide, corresponding to an approximately 200% increase from previous
estimations made in 2015 (53.9m) [282]. Similar trends are expected to follow in
transportation and access control for where mobiles are used to deliver smart
card-type services [283]. This is before considering alternative devices besides
smartphones, such as smartwatches, that may participate in such transactions.

One of the use cases for TEEs on modern mobile devices is the storage of
payment credentials used to authenticate users during NFC-based contactless
transactions. TEEs and SEs form the cornerstone for protecting the integrity of
such credentials against software adversaries from untrusted world components
and a selection of hardware-based adversaries (see Section 2.4.7 of Chapter 2).
TEEs and SEs may be used to store credentials directly, such as certified device-
specific key-pairs used for device authentication. TEEs and SEs are also used to
store limited use tokens via the process of tokenisation, described further in Section
7.2.1, particularly in the context of payment transactions. The repercussions of
unauthorised credential use are somewhat obvious, such as illicit payments
billed to the victim’s account, or using physical access control credentials to
enter a restricted area. Relay attacks are a method by which even TEE- and SE-
bound credentials can be abused by exploiting an inherent weakness in the NFC
specifications over which a TEE or SE communicates. In this chapter, the focus is
on the challenge of proximity and relay attack detection (PRAD) in contactless
transactions between a mobile handset and a terminal or Point of Sale (PoS)
within restricted time-frames.

7.1.1 Motivation

In a relay attack [284], [285], the aim of the adversary is to extend the physical
distance of the communication channel between the victim’s mobile phone and
the transaction terminal, where each message is relayed across this extended
distance. A multitude of Proximity/Relay Attack Detection (PRAD) mechanisms
have been proposed that rely on collecting measurements of the ambient envi-
ronment surrounding the transaction instrument and terminal. These proposals
collect measurements from mobile sensors, such as temperature, location and
motion sensors, which subsequently undergoes a similarity comparison to as-
sure that the transaction devices are genuinely in proximity, and not subject to a
potential relay attack.

However, the proposals presented in existing literature are not compliant
with industry-imposed constraints that stipulate maximum transaction times.
Mobile payments and transportation are two major domains expected to benefit
from NFC contactless transactions where controls exist regarding the maximum
transaction times. These are governed by the EMV specifications and ITSO
respectively. In this chapter, we question whether ambient sensing on mobile devices
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is an effective PRAD method under the time conditions stipulated by industry, and
present an empirical evaluation to this end. In this first part of this chapter, we
consider the notion of proximity detection in which we attempt to detect whether
two co-located legitimate devices (at NFC distance) can be detected from sensor
information alone. This is extended in the second part of the chapter to cover
relay attack detection, where we use data collected from an emulated relay attack
setup from a device that streams sensor data 1.5m away; this represents a ‘worst
case’ close-quarters relay attack.

Generally, this study aims at evaluating the following null and alternative
hypotheses. Null hypothesis: short transaction durations (under 500ms) have no
effect on the error rates of ambient sensing-based proximity and relay attack
mechanisms. Alternative hypothesis: short transaction durations capture insuffi-
cient information to provide acceptable error rates for ambient sensing-based
proximity and relay attack detection mechanisms.

7.1.2 Contributions

This chapter presents the following contributions:

• We present a two-fold evaluation, employing both similarity- and machine
learning-based analyses, demonstrating that ambient sensing-based PRAD
mechanisms perform poorly under the transaction duration requirements
stipulated by EMV and ITSO.

• We evaluate the effectiveness of 17 widely-deployed ambient sensors avail-
able through the Android SDK as a PRAD method for time-restricted con-
tactless transactions. The evaluation was conducted using data collected
from a mock relay attack set-up with consumer mobile devices.

• This two-part study presents results for both proximity and relay attack
detection, and questions the applicability of proposed methods in related
work to time-critical transactions.

• A data-set and test-bed environment4 for reproducing the results of this
work and facilitating future research.

The contributions in this chapter are based on our following publications:

• C. Shepherd, I. Gurulian, E. Frank, K. Markantonakis, R. N. Akram, K.
Mayes, and E. Panaousis. “The Applicability of Ambient Sensors as Prox-
imity Evidence for NFC Transactions”, in Mobile Security Technologies, ser.
IEEE Security & Privacy Workshops, IEEE, 2017.

4Available at: https://github.com/AmbientSensorsEvaluation/

https://github.com/AmbientSensorsEvaluation/
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• I. Gurulian, C. Shepherd, E. Frank, K. Markantonakis, R. N. Akram, and
K. Mayes. “On the Effectiveness of Ambient Sensing for NFC-based Prox-
imity Detection by Applying Relay Attack Data”, in Proceedings of the 16th
IEEE International Conference on Trust, Security and Privacy in Computing and
Communications, ser. IEEE TrustCom ’17, IEEE, 2017.

• (Invited Paper) I. Gurulian, K. Markantonakis, C. Shepherd, E. Frank, and
R. N. Akram. “Proximity Assurances Based on Natural and Artificial
Ambient Environments”, in Proceedings of the 10th International Conference on
Innovative Security Solutions for Information Technology and Communications,
ser. SECITC ’17, Springer, 2017.

7.2 Background and Related Work

In this section, we discuss the role of TEE in the domain of payments more
specifically, and discuss a number of generic deployment models for deploying
proximity- and transaction time-sensitive applications using ambient sensing.
This is followed by an examination of related work that propose sensor-based
mechanisms for proximity and relay attack detection.

7.2.1 TEEs in NFC Contactless Transactions

Mobile TEEs typically use secure I/O with an NFC controller in order to con-
duct sensitive NFC-based contactless transactions without relying upon the
co-operation of entities in the untrusted world (Section 2.4.4 in Chapter 2 showed
how this is instantiated on TrustZone SoCs) [286]–[288]. We briefly describe how
this is realised in payments using Samsung Pay [286].

Firstly, each device TEE hosts a set of TAs developed by authorised payment
networks, such as Visa, MasterCard and American Express, which are provi-
sioned with immutable, TA- and device-specific certified key-pairs for authenti-
cating itself with the respective payment network. EMV5 [289] also stipulates the
use of tokenisation in mobile payments, which is described below in the context
of TEEs. Stage one is card enrollment, where the user registers card details to the
device over a trusted UI path with the payment TA. These details are submitted
by the payment TA to the corresponding payment network or Token Service
Provider Provder (TSP), e.g. Visa, who, if the details are valid, return a set of
dynamic Limited Use Keys (LUKs) with which to authorise future transactions.
One LUK is consumed each time Samsung Pay is used to make a card transaction,
and LUKs are replenished based on the payment network logic. These payment

5EMV is a financial body comprising American Express, Discover, JCB, MasterCard, Union-Pay,
and Visa for developing secure payment standards worldwide
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credentials are provisioned after the state of the device is successfully verified by
the Samsung Pay server using remote attestation. The payment network TA is
responsible for retrieving additional LUKs from the payment network remotely.
For tokenisation, card enrollment also involves the TSP replacing the 16-digit
card Personal Account Number (PAN) with a 16-digit substitute, or Digitised
PAN (DPAN). Whenever the device is used to make a purchase, Samsung Pay
transmits the token DPAN along with a cryptogram generated from the LUK
within the TEE to the merchant’s PoS via NFC. This process is illustrated in Figure
7.1.The merchant then transmits this to the merchant bank, where the payment
network converts the token back into the PAN in order to process the transaction
and debit the user’s account.

FIGURE 7.1: TEE-based NFC Payments with Samsung Pay [286].

Payments are only one application of TEE-based NFC transactions. For
transport applications, Ekberg and Tamrakar [290] describe a generic architecture
for gated ticketing with TEEs in two phases. Phase one presumes the user’s
transport TA is provisioned with a certified key-pair. After receiving a challenge
from the gate terminal, the TA transmits the public component along with the
PAN over NFC, where the terminal (connected to the transport system’s back-
end) returns n short-term ticketing credentials mapped to that public key and the
user’s PAN. In phase two (payment), assuming the user PAN was not blacklisted,
the transport TA transmits an unused short-term credential from phase one to the
gate terminal, which passes it to the back-end for fare calculation and payment
from a pre-paid account.
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Other systems, such as London Buses, charge the user akin to typical pay-
ments using the global payment infrastructure under a pay-as-you-go (PAYG)
model. Some, such as the London Underground, use an aggregated model in
which multiple transactions are backlogged before performing fare calculation,
e.g. between multiple towns in a single day, also known as the Aggregated PAYG
model [291]. In general, NFC acts only as the communication medium over which
credentials are passed, while the TEE is used to host them in a tamper-resistant
environment.

7.2.2 Relay Attacks

NFC is a set of communication protocols based on Radio Frequency Identification
(RFID) that was developed by NXP and Sony in 2002. It operates wirelessly
on the 13.56 MHz Radio Frequency (RF) band using electromagnetic induction
between two loop antennas on two NFC-enabled devices. NFC has a maximum
operating distance of 10cm and a bit-rate of 424kbps, and is standardised in
ISO/IEC 18092 [292] and ISO/IEC 21481 [293]. Nowadays, many modern hand-
sets contain NFC transceivers, such as the Apple iPhone, Samsung Galaxy S9, and
the Google Pixel. However, NFC contains a long-standing issue of containing no
security mechanisms for proximity detection in order to ensure that the distance
of communicating devices is, indeed, the intended distance [290]. Typical NFC
services simply assume that the devices are located together at a short-range
operating distance, i.e. 1-5cm. It is this assumption that allows relay attacks to be
conducted successfully.

A relay attack [284], [285] is a passive man-in-the-middle attack in which the
aim of the malicious actor is to extend the physical distance of the communication
channel between the victim’s mobile phone and the transaction terminal. Each
message is then ‘relayed’ across this extended distance. The attacker extends
this distance using equipment that masquerades as legitimate devices to both
the terminal and victim device, as shown in Figure 7.2. The attacker has the
potential to gain access to services using the victim’s account if the application-
layer messages are relayed successfully without detection. Relay attacks are an
instantiation of the Grand Master Chess problem in network security in which a
naïve player, A, poses as a grandmaster player to two other grandmasters, B and
C. B and C begin playing as if they are facing a grandmaster, A, who is actually
relaying the messages betweenB and C as a man-in-the-middle, without actually
possessing any requisite knowledge.

At present, additional user-authentication mechanisms, namely a fingerprint
or Personal Identity Number (PIN) entry input, may or may not be required in
order to authorise a contactless mobile transaction, depending on the deployment
scenario. This adds a layer of defence against a relay attack in which the attacker
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FIGURE 7.2: Overview of a relay attack.

must convince the victim to complete the challenge before the transaction is
authorised. However, a second factor of authentication is often not required; for
example, it is not mandatory in NFC payments below a pre-set transaction limit
(currently £30 in the UK) [294]. Moreover, the the use of PINs and biometrics
cannot prevent relay attacks if the victim interacts with a malicious terminal
believing it to be genuine – also known as the Mafia Fraud attack [295]. Whatever
the situation, a relay attack allows an attacker to circumvent the protections
offered by TEEs by, instead, exploiting the proximity vulnerability in the NFC
specifications in order to abuse the credentials transmitted by a TEE over NFC.

7.2.3 Relay Attack Countermeasures

For contactless smart cards, relay attacks can be countered using distance-bounding
protocols [296], [297]. Here, at its most a basic, a challenger, V , measures the
time taken to receive a response from the prover, P [297] (also known as time-of-
flight). If this time exceeds a pre-determined threshold, t, then the presence of
a relay attack is assumed to have occurred based on the added network latency
introduced between the two intermediary devices controlled by the attacker.
Smart card-based distance-bounding protocols remains an active research do-
main, with new attacks and countermeasures emerging regularly [295], [298],
[299]. Hardware-based distance-bounding products have also begun to emerge:
3DB-Access6 offers distance-bounding based on the time-of-flight of radio packets
transmitted on the 6-8GHz spectrum. It operates up to an approximate range of
120 meters, with a stated accuracy of 10cm, 100% bounding success rate, and low
power consumption (2µJ per measurement); its marketed applications include
thwarting relay attacks on contactless car keys, and assuring co-location of IoT
devices and assets within industrial environments.

Notably, however, these approaches are not easily generalisable to NFC-
enabled phones because of the variance in hardware-software configurations on
mobile platforms that renders it difficult to establish reliable and reproducible
timings [63], [279], [300]. Alternative methods have been proposed to provide

63DB-Access: https://www.3db-access.com/

https://www.3db-access.com/
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proximity detection using environmental and motion sensors present on modern
mobile handsets [300]–[305]. In Section 7.2.4, we discuss how ambient sensors
have been proposed to counter relay attacks in NFC-based mobile contactless
transactions.

FIGURE 7.3: Generic deployment of mobile sensing for proximity
detection.

An ambient sensor measures a particular environmental property of its imme-
diate surroundings, such as temperature, light, humidity and sound; a wealth of
such sensors are deployed within modern smartphone and tablets (see Appendix
B). Figure 7.3 illustrates a general approach for using ambient sensing as a PRAD
mechanism for contactless transactions with the following variations:

1. Independent Reporting. Both the transaction instrument, e.g. user’s
phone, and the terminal/PoS collect sensor measurements independently,
who each transmits them to a trusted authority, TrA (solid lines in Fig-
ure 7.3). The authority compares the sensor measurements, based on some
predefined comparison algorithm with set margins of error (threshold), and
decides whether the two devices are within proximity to each another.

2. Payment Terminal Dependent Reporting. The smartphone encrypts its
collected measurements with a shared key between itself and the TrA,
and transmits the encrypted message to the payment terminal (shown as
double-dot-dash lines in Figure 7.3). The payment terminal sends its own
measurements and the smartphone’s encrypted measurements to the TrA
for comparison.

3. Payment Terminal (Localised) Evaluation. The smartphone transmits its
measurement to the payment terminal, which compares them with its own
measurements locally. It is the payment terminal that decides whether the
two are in proximity.
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7.2.4 Proposed Sensing-based Countermeasures

In this section, we summarise the key pieces of related work that suggest the
use of ambient sensing as a proximity and relay attack detection mechanism for
secure transactions.

Ma et al. [301] propose the use of GPS (Global Positioning System) location
data for determining the proximity of two mobile phones. A ten-second recording
window is used in which GPS data points are collected each second on two
devices, which subsequently undergo a similarity comparison. The authors note
that, when the devices were placed 2m apart, the GPS values actual recorded
by each device corresponded to distances between 1.78m–6.21m. Using this
maximum error (6.21m), the work evaluates relay attack success rates at varying
distances (in meters): 100% at 1m apart, 92.5% at 2m, 85% at 3m, and 67.5% at
5m, before dropping significantly to 0% at 20m and beyond. While this shows
promise at larger distances, i.e. >20m, even the best case scenarios (1–3m) are
far beyond the intended operating distance of NFC (1-5cm). That is, the scheme
performs poorly against attacks at close-quarters (<3m), like in queues at a store
PoS or ticketing gate.

Halevi et al. [300] demonstrate the use of ambient sound and light for prox-
imity detection. The authors analyse sensor measurements – collected for a
duration of 2 and 30 seconds for light and audio respectively – using a range
of similarity comparison metrics (see Section 7.3.3). The two devices were sep-
arated by a distance of 3-12 inches, and 200 transactions were captured at five
unique locations, including a coffee shop, concert hall, library (at two different
locations), and McDonalds. The evaluation results yielded an attack detection
rate of 82.5%–100% depending on location. However, the sample durations (2–30
seconds) significantly exceed the timing restrictions stipulated by EMV and ITSO
for transaction durations.

Varshavsky et al. [305] use the shared radio environment of devices – the
presence of WiFi access points and associated signal strengths – as a proximity
detection mechanism for secure device pairing. The approach is evaluated with
genuine co-located devices at 5cm apart, while illegitimate transactions are con-
ducted at 1m, 3m, 5m and 10m away. The work also evaluates a range of total
transaction times between 1–30 seconds, producing a worst-case false positive
rate of approximately 0.7–0.9 for an attacker located 1m away depending on the
sampling period between 1–30s. However, this drops significantly to under 0.1
for attacker located further away (3–10m). This corresponds with previous work
that shows distance has a significant effect on error rates. The approach focusses
on the challenge of device-pairing, rather than relay attacks on NFC-based mobile
transactions, and does not consider the time-critical durations targeted in this
work.
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Urien et al. [304] propose a mutually authenticated secure channel protocol
based on elliptic curve cryptography with ambient sensing in order to counter
relay attacks. The proposal incorporates ambient temperature in conjunction with
timing-based distance bounding to determine whether two devices are co-located
before allowing the creation of the secure channel. The work, however, was not
implemented and has no experimental data to evaluate its effectiveness.

Mehrnezhad et al. [306] propose the use of an accelerometer to provide
proximity assurances of a mobile device with a payment terminal. The scheme
requires the user to tap the terminal twice in succession, before comparing the
sensor data from the device and the terminal for similarity using a variety of
statistical measures (Section 7.3.3). The authors evaluate a recording time range
of 0.6–1.5 seconds and report an equal error rate (EER) of between 17.65% and
30.22%, depending on the similarity metric, after a two-tap interaction.

Karapanos et al. [132] propose Sound-Proof that uses the ambient sound
recorded by the user’s computer and mobile device as a second factor of authen-
tication during log-in attempts. After a recording period of 3 seconds on both
devices, cross-correlation is used to compare the similarity of measurements from
the devices to determine whether they are, indeed, co-located or not. The total
time to perform the distance-bounding is 4677ms and 4944ms over WiFi and
cellular connections respectively (including the recording time), with an exhibited
EER of 0.2%. We note that, while Sound-Proof is meant as a second-factor for
log-ins in conjunction with a password, and not NFC-based transactions such as
for payments and transportion, its methods are still interesting to this work.

Truong et al. [303] evaluated four different sensors – WiFi, Bluetooth, GPS
and Audio – for providing relay attack resistance. The authors record data over a
total sampling period of two minutes, and estimate the accuracy of the proposal
across the average of 5–15 second segments contained therein. Features are
extracted from each segment, such as cross correlation of audio signals and the
intersection of shared WiFi ESSIDs, which are used as input to a supervised
learning classifier using decisions trees. The scheme reports a false negative
rate of between 8.95% (5s) and 1.49% (15s), and a false positive rate of 7.14%
(5s) to 2.14% (15s). While the results are promising, the relatively long sampling
duration renders it unsuitable for time-critical NFC-based mobile transactions.

Jin et al. [307] demonstrate the use of a smartphone’s magnetometer to es-
tablish proximity assurance for secure device pairing against relay attacks. The
authors use statistical similarity measures, including average cross correlation
and Pearson’s correlation coefficient, within a secure channel protocol to assure
both end-points that they are communicating with the intended nearby device.
The work evaluates three different handsets using the proposed measures under
varying sampling durations between 2–5 seconds, against an attacker device
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located 10cm away. The results indicate that, in a user study of untrained users, a
90–100% success rate for attack detection is achievable on average within 4.5s,
falling to 80% at 2s.

Shrestha et al. [302] evaluated four ambient sensor modalities – ambient
temperature, precision gas, humidity, and altitude – for proximity detection
using specialised hardware, known as Sensordrone. The authors collect 207
samples at 21 different locations, which is used as input to a Multiboost classifier
with Random Forests as the weak learner. The results yield a false negative rate of
between 2.96%–23.47%, and a false positive rate ranging between 5.81%–32.40%.
The authors claim that these particular sensors require only one sample to achieve
these error rates.

TABLE 7.1: Sensor-based PRAD mechanisms from related work.

Paper Sensors Sample Required
Contactless
Suitability

Ma et al. [301] GPS Location 10 seconds Unlikely
Halevi et al. [300] Ambient Audio 30 seconds Unlikely

Light 2 seconds Likely
Varshavsky et al. [305] WiFi 1–30 seconds Likely
Urien et al. [304] Temperature N/A* N/A
Mehrnezhad et al. [306] Accelerometer 0.6–1.5 seconds Likely
Karapanos et al. [132] Ambient Audio 3 seconds Likely
Truong et al. [303] GPS Location 5–15 seconds Unlikely

WiFi — —
Ambient Audio — —
Bluetooth — —

Jin et al. [307] Magnetometer 2–5 seconds Likely
Shrestha et al. [302] Temperature (T) Per sample Likely

Precision Gas (G) — —
Humidity (H) — —
Altitude (A) — —
HA — —
HGA — —
THGA — —

* Neither implemented nor evaluated. — Repeat entry. N/A Not applicable.

Table 7.1 summarises past work, using sensor sampling durations required to
achieve their desired accuracy in order to determine their suitability for protecting
time-critical NFC-based mobile phone transactions. ‘Unlikely’ proposals have
sample durations so large that they vastly exceed a reasonable time in order to
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conduct mobile-based services, while those with reasonably short durations are
labelled ‘Likely’. However, even schemes denoted ‘Likely’ may not be suitable;
no proposal was evaluated under the specific time constraints stipulated by the
banking and transport sectors. Precisely, EMV stipulates a maximum transaction
duration of 500ms [294], [308], [309], while, for transport-related transactions, it
must complete between 300ms–500ms [310], [311]. In these sectors, minimising
transaction time is critical in order to maximise customer throughput for reducing
waiting times and congestion. In mass transit, aiming to process 30 travellers per
minute is a widely-adopted guideline by transport authorities [311]. In light of
this, we see that no scheme in Table 7.1 evaluates sampling durations within this
limit, which is the primary objective of this work.

7.2.5 General Approaches

In previous work, two general approaches have been used for implementing
sensing-based PRAD mechanisms:

• Threshold-based Similarity: the use of time and frequency domain similarity
metrics, such as Mean Absolute Error (MAE), Pearson’s Correlation Coeffi-
cient and Coherence. A single threshold, t, is found that aims to separate
all legitimate transactions from illegitimate ones using a given similarity
metric. The transaction is accepted if the metric result falls within this
pre-set t of the maximum allowed dissimilarity.

• Machine Learning: the use of supervised classification algorithms, such as
Naïve Bayes, Support Vector Machines (SVMs) and Random Forests, to
produce more complex models for mapping input feature vectors to labels.
The classifier is trained on a set of feature vectors with corresponding binary
labels (legitimate or relayed transaction), which are collected beforehand.
The trained model is used to classify subsequent transaction data streams
as legitimate or relayed.

Standard binary classification evaluation metrics have been applied to mea-
sure the effectiveness of a particular scheme, namely classification accuracy [300],
f-scores [302], [303] and Equal Error Rate (EER) [306]. F-scores and EERs involve
the computation of false positives/acceptances (the number of relayed transactions
accepted erroneously) and false negatives/rejections (the number of legal transac-
tions rejected). F-scores account for precision, the correct positive results divided
by the number of all positive results, and recall, the number of correct positive
results as proportion of the number of positive results that should have been
identified. The EER is found by calculating the False Acceptance Rate (FAR)
and False Rejection Rate (FRR), shown in Eq. 7.1, over a range of thresholds and
finding the rate at which FAR = FRR. Alternatively, some authors have opted
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to present the FAR and FRR results alone [305]. Finally, accuracy represents the
correct identification of positive and negative transactions in the test set (Eq. 7.2),
but does not clearly illustrate the number of false positives and negatives.

F-scores and accuracy have been used to primarily evaluate machine learning-
based relay attack detection, e.g. [302], [303], while EERs have typically been
employed for threshold-based similarity approaches [306] to find an acceptance
threshold that, broadly, balances usability (false rejection rate) with security (false
acceptance rate). We use the EER as a common evaluation metric for assessing
the performance of machine learning and threshold-based approaches across a
variety of similarity metrics.

FAR =
FP

FP + TN
FRR =

FN

FN + TP
(7.1)

Accuracy =
TP + TN

TP + TN + FP + FN
(7.2)

7.3 Effectiveness for Proximity Detection

In the first step of our study, we evaluate the effectiveness of ambient sensing
for proximity detection alone between two co-located devices at NFC distance.
Detecting the presence of a relay attack is an extension of this, which we study
later in Section 7.4.

7.3.1 Test-bed Construction

Proximity detection is the notion that the sensor measurements taken from two
devices, TT and TI, are sufficiently similar to belong to the same transaction,
while remaining sufficiently distinct to separate it from measurements taken from
other device pairs, i.e. (TT’, TI’). Two applications were developed and installed
on a pair of Android devices: one emulating a transaction terminal (TT) and the
other acting as the transaction instrument (TI). In this study, we evaluated 17
sensors available through the Android SDK that were also available through our
available devices: a Google Nexus 9 tablet, and Google Nexus 5, Samsung SGS5
Mini, and Samsung Galaxy S4 smartphones. The choice of which device acted
as TI and TT depended on sensor availability. Table 7.2 states the availability of
each sensor on each handset.

When the devices come sufficiently close, an NFC connection is established
and both begin recording data using a specified sensor. After collecting measure-
ments for 500ms, in line with the transaction requirements stipulated by EMV
and transport, each device stored the recorded data in a local database for off-line
analysis. Figure 7.4 illustrates the recording process.
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TABLE 7.2: Device sensor availability.

Sensors Nexus 9 Galaxy S4 Nexus 5 SGS5 Mini

TT-TI Pair: Nexus 9→ Nexus 5
Accelerometer 3 3 3 3

Bluetooth 3 3 3 3

GPS 3 3 3 3

Gyroscope 3 3 3 3

Magnetic Field 3 3 3 3

Network Location 3 3 3 3

Pressure 3 7 3 7

Rotation Vector 3 3 3 3

Sound 3 3 3 ∗
WiFi 3 3 3 3

TT-TI Pair: Nexus 9→ SGS5 Mini
GRV† 3 7 ∗ 3

TT-TI Pair: SGS5 mini→ Nexus 5
Gravity ∗ 3 3 3

Light ∗ 3 3 3

Linear Acceleration 3 ∗ 3 3

Proximity 7 3 3 3

TT-TI Pair: Galaxy S4→ Galaxy S4
Relative Humidity 7 3 7 7

Ambient Temperature 7 3 7 7

3: Present on device. 7: Not present. ∗: Known technical issues on this
handset. †GRV: Geomagnetic Rotation Vector.

7.3.2 Data Collection

Next, a field trial was conducted in which sensor data from 1,000 transactions per
sensor was collected from 252 users at four different locations on the university
campus: 1,000 at the library, cafe, dining hall, and computing lab – approximately 250
at each. During the trial, the TT device was fixed, thus replicating a terminal/PoS,
while TI was free of any restrictions. However, prior to these trials, the first stage
was investigating whether any values could be captured in such a small time-
frame for each sensor. We collected 50-100 initial transactions in the computing
lab and eliminated sensing modalities that exhibited sensor failures in which the
sensor returned no values within 500ms. For completeness, we also recorded the
number of transaction failures, in which a transaction was unexpectedly terminated
due to, for example, the user unintentionally moving the device away mid-
transaction and the protocol failing to complete. Table 7.3 displays the transaction
and sensor failure rates for each sensing modality, including those transactions
collected during field trials.
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TT TI

1) sensor|transaction ID

recordSensor() recordSensor()

validateReceivedData()

2) sensor|transaction ID

saveMeasurement()validateReceivedData()

saveMeasurement()

FIGURE 7.4: Measurement recording overview.

Six sensors notably failed to capture any measurements in the 500ms time-
frame for the vast majority of transactions: Bluetooth, GPS, Network Location,
WiFi, ambient temperature and humidity. All of these modalities recorded a
sensor failure rate between 91.17–100%, which would evidently cause problems
in practice, and so we omitted these sensors from subsequent analysis. The field
trials involved collecting 1,000 transactions for each sensor modality, as stated
previously. We requested 252 users to present TI to TT as many times as they
preferred. We established walk-in counters at the four aforementioned locations
around the university campus; students walking nearby were invited to assist us
in the trial. A walk-in counter established at the university library is shown in
Figure 7.5.

7.3.3 Analysis Approach

After collecting approximately 1,000 transactions per sensor, the data was re-
trieved from each of the device’s local databases converted to CSV in preparation
for either similarity- or machine learning-based analysis. For each sensor, the
EER were computed using six time- and frequency-domain similarity measures,
including those used in previous work. We list these forthwith. Time domain met-
rics: Mean Absolute Error (MAE), Eq. 7.3; Pearson’s correlation coefficient [306],
Eq. 7.4; maximum cross-correlation [132], [300], [303], Eq. 7.5; and Euclidean
distance [303], Eq. 7.6. Frequency domain: coherence [306], Eq. 7.7. Both domains:
time-frequency distance [300], [303], Eq. 7.8. Each metric was applied directly
onto the sensor data collected during the field trials. For machine learning, the
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TABLE 7.3: Sensor and transaction reliability.

Sensors
Total Transaction Sensor

Transactions Failures Failures

Accelerometer 1025 13 (1.26%) 0 (0%)
Bluetooth 101 1 (0.99%) 99 (99.1%)
GRV 1019 8 (0.78%) 0 (0%)
GPS 101 1 (0.99%) 100 (99.10%)
Gyroscope 1022 11 (1.07%) 0 (0%)
Magnetic Field 1027 17 (1.65%) 0 (0%)
Network Location 1053 15 (1.42%) 960 (91.17%)
Pressure 1018 10 (0.98%) 0 (0%)
Rotation Vector 1023 14 (1.36%) 0 (0%)
Sound 1047 4 (0.38%) 0 (0%)
WiFi 100 0 (0%) 100 (100%)
Gravity 1165 143 (12.27%) 0 (0%)
Light 1057 37 (3.50%) 0 (0%)
Linear Acceleration 1175 159 (13.53%) 3 (0.26%)
Proximity 1071 58 (5.41%) 0 (0%)
Ambient Temperature 50 0 (0%) 47 (94%)
Humidity 50 0 (0%) 47 (94%)

Weka package was employed, while a Python application was developed for
similarity-based similarity learning using the Numpy, Scipy, Matplotlib and
Pandas Python packages for metric implementations, CSV data processing, and
result computation.

MAE(A,B) =
1

N

N∑
i=1

|Ai −Bi| (7.3)

corr(A,B) =

∑N
i=1((Ai − µA)(Bi − µB))√∑N

i=1 (Ai − µA)
2∑N

i=1 (Bi − µB)
2

(7.4)

Where µA represents the arithmetic mean of A.

Mcorr(A,B) = max(cross_correlation(A,B)) (7.5)

d(A,B) =

√√√√ N∑
i=1

(Bi −Ai)2 (7.6)

CAB(f) =
|GAB(f)|2

GAA(f) ·GBB(f)
FAB =

∑
f

CAB(f) (7.7)

Where GAA is the auto-spectral density of A, and GAB is the cross-spectral
density of signals A and B (left, Eq. 7.7). The similarity is found by the sum of
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FIGURE 7.5: Walk-in booth located at the university library, show-
ing TT (red rectangle), TI (yellow), and a display stream of TT

showing current sensor progress (blue).

the magnitudes of coherence values at all frequencies (right).

Diff(A,B) =

√
Dtime(A,B)2 +Dfreq(A,B)2 (7.8)

WhereDtime(A,B) = 1−Mcorr(A,B) andDfreq(A,B) = ||FFT (A)−FFT (B)||,
in which ||FFT (A)− FFT (B)|| is the Euclidean norm of the FFTs of signals A
and B.

The set of all transactions was produced after retrieving the databases from
TT and TI. Each transaction, Ti can be represented as a tuple of TT and TI
values, i.e. Ti = (TTi, T Ii), where each TT and TI contains a set of sensor
measurements for transaction i. The set of legitimately co-located samples, C,
was the set of all transactions for each sensor from the TT and TI collected
during field trials, i.e. C = {(TT 1, T I1), (TT 2, T I2), . . . , (TTn, T In)}, where n
was the number of successful transactions shared between the devices. The set
of unauthorised pairs, which were not co-located, was formed by exhaustively
pairing the measurements of TTi with every TIj belonging to another transaction
(i 6= j). This pairs the measurements of TTi with TIj measurements taken from
another physical location or at a different point in time in the same location.
(Measurements are assumed to be independent between transactions; the field
trials collected measurements over the course of a week across all locations). For
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FIGURE 7.6: FAR and FRR curves for the accelerometer sensor
with MAE similarity metric.

effective proximity detection, a similarity- or machine learning-based model must
be able to distinguish only legitimate sensor values taken at the same location
(1-5cm apart) and time. Other sensor pairs, taken at a different location or time
period, ought to be rejected.

Having formed the positive and negative transaction sets, we computed the
FAR and FRR rates, and the point at which they intersect (EER), for each of the
observed thresholds for each of the aforementioned similarity metrics: Mean
Absolute Error (MAE), Pearson’s Correlation Coefficient (PCC), Cross Correlation
(C-Corr), Euclidean Distance (ED), Coherence (Coh), and Time-Frequency Dis-
tance (T-FD). An example curve for the accelerometer sensor using MAE is found
in Figure 7.6. For machine learning, we conducted 10-fold cross-validation 10
times using six supervised classification algorithms proposed in related literature
and beyond: Random Forest, Naïve Bayes, Logistic Regression, Decision Tree
(C4.5), Support Vector Machine (SVM) and Multilayer Perceptron.

7.3.4 Analysis Equipment

The similarity-based analysis was conducted on a Linux (Fedora) machine with a
quad-core Intel i5-4690k (3.7GHz) and 16GB of RAM. The analysis application
was developed in Python, using the Pandas [312], NumPy [313] and SciPy [314]
libraries for data loading and numerical computation, including implementations
of the aforementioned statistical measures. For the analysis by machine learning,
the Weka toolkit, implemented in Java, was employed on a cluster of 10 Ubuntu
Linux computers with quad-core Intel i7-2600 CPUs (3.8GHz) and 16 GB of RAM
each. Multi-threading was used for training random forests and performing
parameter optimisation for SVMs, and parallelising the computation of each
similarity-based metric.



7.3. Effectiveness for Proximity Detection 195

TABLE 7.4: Similarity-based EERs for each sensor with Mean
Absolute Error (MAE), Pearson’s Correlation Coefficient (PCC),
Maximum Cross-Correlation (C-Corr), Euclidean Distance (ED),
Coherence (Coh) and Time-Frequency Distance (T-FD). Best result

for each sensor shown in bold.

Sensor MAE PCC C-Corr ED Coh T-FD

Accelerometer 0.495 0.493 0.501 0.498 0.542 0.501
GRV† 0.442 0.486 0.500 0.442 0.524 0.498
Gravity 0.500 0.496 0.498 0.501 0.506 0.498
Gyroscope 0.498 0.454 0.493 0.498 0.548 0.499
Light 0.501 0.500 0.545 0.502 0.471 0.546
Linear Acceleration 0.504 0.481 0.494 0.507 0.507 0.500
Magnetic Field 0.323 0.574 0.537 0.337 0.568 0.536
Pressure 0.284 0.634 0.601 0.284 0.503 0.601
Rotation Vector 0.498 0.466 0.501 0.278 0.500 0.273
Sound 0.343 0.555 0.481 0.338 0.517 0.481

Proximity excluded due to insufficient unique values.
†GRV: Geomagnetic Rotation Vector sensor.

7.3.5 Results

The results for the threshold-based and machine learning analyses are presented
in Tables 7.4 and 7.5 respectively. Note that the proximity sensor was excluded
from the analysis. We discovered that only on a small selection of Android devices
with proximity sensors return the precise distance at which an object is located
from the sensor. The majority of others return a binary value for whether an
object is close to or far from the sensor (within 5cm) [315]. Our test-bed devices
returned only binary values and, as a result every transaction contained ‘far’
values, as the devices were tapped back-to-back and the sensor was located on
the front of the devices. Consequently, this returned identical values in almost all
cases when applying the similarity metrics described previously, e.g. MAE = 0,
which prevented threshold-finding and effective machine learning classification.
Readers should be aware of this technical peculiarity when considering proximity-
based sensors on mobile handsets.

Other technical challenges existed elsewhere: the Rotation Vector sensor, for
example, returned significant numbers of zero values on the test-bed devices,
which likely distorted the results of our analysis. This is due to the fact that
the previous sensor is returned unless the device is significantly perturbed in
order to minimise energy consumption [316]. The GRV sensor, which uses the
magnetometer for computing rotations, was able to capture values as intended.
Lastly, we noticed that sound was capable of capturing values for only half of
the permitted 500ms time-frame, due to the latency introduced in initialising
the microphone and recording the sample. (Note that we did not consider
any ‘pre-recording’ measures before the transaction as a potential remedy. The
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TABLE 7.5: Estimated EERs for machine learning algorithms,
obtained by repeating stratified 10-fold cross-validation 10 times.

Best result for each sensor shown in bold.

Sensor Random Naive Logistic Decision Support Multilayer
Forest Bayes Regression Tree Vector Machine Perceptron

Accelerometer 0.626±0.024 0.509±0.026 0.526±0.023 0.500± 0.0 0.498±0.025 0.551±0.025
GRV 0.435±0.021 0.447±0.024 0.474±0.031 0.500± 0.0 0.489±0.036 0.450±0.026
Gravity 0.874±0.018 0.579±0.020 0.579±0.024 0.500± 0.0 0.500±0.026 0.746±0.112
Gyroscope 0.683±0.027 0.499±0.024 0.543±0.024 0.500± 0.0 0.511±0.025 0.514±0.025
Light 0.576±0.026 0.515±0.024 0.533±0.025 0.500± 0.0 0.508±0.024 0.513±0.028
Linear Acceleration 0.603±0.025 0.507±0.027 0.543±0.023 0.500± 0.0 0.500±0.021 0.554±0.028
Magnetic Field 0.292±0.021 0.319±0.020 0.322±0.020 0.415±0.015 0.398±0.046 0.329±0.026
Pressure 0.103±0.010 0.107±0.010 0.287±0.013 0.092±0.054 0.319±0.045 0.114±0.019
Rotation Vector 0.276±0.046 0.563±0.243 0.596±0.233 0.500± 0.0 0.513±0.243 0.488±0.245
Sound 0.288±0.019 0.314±0.022 0.310±0.021 0.347±0.136 0.411±0.041 0.306±0.020

effectiveness of pre-recording, particularly in relation to battery consumption
and ideal pre-recording times, is considered out-of-scope in this study).

7.3.6 Discussion

The results indicate that no sensor in either analysis can satisfactorily distin-
guish between proximate and non-proximate device data pairs. Some sensors
provide virtually no discriminatory power and perform similarly to a random
classifier (50%), such as the accelerometer (49.3–49.8% EER), linear acceleration
(48.1–50.0%), GRV (48.6–50.0%), light (47.1–50.0%), gyroscope (45.4–49.9%), and
gravity sensors (49.6–50.0%). Other sensors evidently provide significantly better
discrimination, such as magnetic field (29.2–32.3%), pressure (9.2–27.0%) and
rotation vector (27.3–27.6%). In the best case, with the pressure sensor using the
Decision Tree classifier, the EER was 9.2%.

By definition of the EER, this implies that approximately 9.2% of both legiti-
mate and illegitimate transactions would be rejected and accepted respectively.
Rejecting almost 1-in-10 legitimate transactions in a high throughput scenario is
likely to cause user annoyance in practice, such as mobile ticketing in a subway
system. For some high security deployments, such as physical access control,
these error rates may, indeed, be an acceptable trade-off in order to reduce relay
attack detection to only 1-in-10 illegitimate transactions being accepted. Gener-
ally, however, for payments and transportation applications that require high
throughput and convenience, it is difficult to recommend any single sensor in our
analysis as an effective proximity detection method in time-critical deployments.

7.4 Relay Attack Detection

The previous study focused only on proximity detection rather than using data
from relay attacks. Relay attack detection is an extension of proximity detection:
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an effective relay attack detection mechanism must thwart attackers located
nearby and allow genuinely proximate devices using data collected from an
attack setup. This is opposed to the previous study that did not incorporate data
from actual attacking devices; rather, the non-proximate pairs were estimated by
pairing data from other transactions. We resolve this in this study by conducting
further field trials and collecting data from two devices that were genuinely
in proximity and a third device – the attacker – located 1.5m (5ft) away. This
replicated a relay attack in which an adversary launches the attack on a nearby
victim, such as in a store queue, without detection. We aimed to determine
whether sensor measurements from a illegal transaction device pair – the terminal
and the device 5ft away – could be distinguished from a legitimate pair, i.e. the
terminal and the device in correct proximity.

Like the previous section, we present an empirical study that evaluates mobile
sensors as a potential relay attack detection mechanism under the practical time
constraints stipulated by EMV. An effective sensor should be able to reject sensor
values that were recorded on distant devices, while still accepting legitimate
transactions. We conducted another two-fold evaluation based on similarity-
based threshold analysis and machine learning.

7.4.1 Test-bed Design

A test-bed environment was designed and developed that captures both legiti-
mate and illegitimate pairs of sensor measurement under real-world conditions.
A genuine pair of measurements is from two devices that are physically in close
proximity to each other (<3cm), while an illegitimate pair is from two devices
that are not physically in close proximity, which we consider to be 5ft (1.5m).
To achieve this, we develop a test-bed, illustrated in Figure 7.2, that records
sensor measurements on both the legitimate terminal and device, and an emu-
lated victim phone at distance. (All three devices measure the ambient sensor
values concurrently in order to avoid any discrepancies in the measurements
due to differences in time). The relay pair comprised a transaction terminal (TT)
and a transaction instrument (TI′), while the legitimate pair consisted of a relay
transaction terminal (TT′), and a genuine transaction instrument (TI). Devices TI′

and TI were tapped simultaneously against devices TT and TT′ respectively.
Figure 7.7 illustrates the overview of the test-bed. The Transaction Terminal

(TT) is a static device, and we use this as a reference point for our two pairs.
The Transaction Instrument (TI′) is a mobile phone in close proximity to the
TT. Another mobile phone, at a 1.5m distance from the TT, is referred to as the
Transaction Instrument (TI), and is co-located with the Transaction Terminal
(TT′). At a point in time a user taps TI′ to TT; at approximately this point,
TI is also tapped against TT′ and initiates the ambient sensor measurements.
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Transaction 
Instrument (TI’)

Transaction 
Terminal (TT)

Trusted Authority

TI’ Sensor Measurement

TT Sensor Measurement

Transaction 
Instrument (TI)

TI Sensor Measurement

Transaction 
Terminal (TT’)

FIGURE 7.7: Test-bed overview. (TT′ and TI′ are the adversarial
devices used as the intermediaries in a relay attack).

Hence, at approximately the same time, we have three separate ambient sensor
measurements for the three devices (TT′ does not record any sensor values).
Overall, for an ambient sensor to be effective, the Trusted Authority should
be able to distinguish the genuine pair from the illegitimate pair. To evaluate
each ambient sensor’s effectiveness for proximity detection and to detect relay
attacks, we analysed the collected data using threshold and machine learning
based analyses.

7.4.2 Test-bed Construction

The devices TT and TI′ were placed at a distance of 5ft from the devices TT′

and TI. When TI′ was brought in close proximity to TT, an NFC connection
between the two devices would be established, initiated by TT, indicating the
beginning of a transaction. According to the EMV standard, TT and TI′ should
be in proximity, i.e. within the intended 5cm distance of NFC [294]. During the
analysis process, the pair TT–TI′ represented the genuine devices, where no relay
attack was involved. The pair TT–TI represented the genuine devices, where a
relay attack was active.

Three Samsung Galaxy S4 (GT-I9500) Android devices running Android 5.0.1
were used in the experimental phase for data collection7. The reader is referred
back to Table 7.2 in Section 7.3.1 for the availability of sensors aboard this handset.
Additionally, a Nexus 5 Android device was used as TT′, which was not collecting
sensor data. As we saw in Table 7.3 in Section 7.3.2, many sensors could not

7This selection differs from the previous study in Section 7.3 as the two studies were conducted
approximately 6 months apart and we no longer had access to the SGS5 Mini or Nexus 9.
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capture any values in the 500ms timeframe in our initial tests. Based on this, we
again eliminated the sensors exhibiting over 90% failure rates from subsequent
analysis, namely Bluetooth, GPS, Network Location and WiFi sensors. We also
eliminated Ambient Temperature and Relative Humidity sensors, due to their
rarity on mobile handsets at the time of writing8. Another issue we encountered
was also raised in the previous section. The proximity sensor on Samsung Galaxy
S4 returns only a true or false value when the sensor, located in the front of
the device, is covered or uncovered. As such, it could not be used effectively
in the experimental phase. Lastly, the sound sensor, i.e. the microphone, was
also tested; we found that this could not initiate and record values within 500ms
for the Galaxy S4 handsets. Consequently, we also removed this sensor from
subsequent analysis; however, we note that on some devices, this is possible,
namely the Nexus 9 and Nexus 5 evaluated previously. We omitted this sensor
for the purposes of this evaluation, but we stress that while it could form an
effective relay attack detection mechanism, the previous evaluation provided
evidence to the contrary. It is unknown whether this issue is prevalent across a
wide range of handsets. This process of elimination led to the selection of seven
sensors from which to collect data during field trials: accelerometer, gyroscope,
magnetic field, rotation vector, gravity, light, and the linear acceleration sensor.

A total of 400 transactions were collected for each sensor, distributed over two
distinct locations on the university campus. For each transaction, a sensor capture
lasting 500ms was initiated upon the touching of TT with TI′, and TT′with TI on
both sides using NFC. Upon completion, the devices TT, TI′, and TI stored the
collected sensor data locally for off-line analysis. The complete implementation
of the test-bed, data analysis and collection data sets for this second analysis
are available at: https://github.com/AmbientSensorsEvaluation for
further research in the domain of relay attack detection under time-critical con-
tactless NFC transactions.

Transaction Synchronisation

The first challenge is designing a framework in which three devices can collect
sensor data simultaneously using a fourth device as an intermediary relay, while
remedying the issue of the devices recording at significantly different times (or
not at all). This is more difficult than the previous study, which relied on data from
two communicating devices and can be implemented with a simpler protocol
with only one NFC-based connection. To this end, three Android applications
were developed in total. Firstly, devices TI′ and TI were running the same

8While evaluating the availability of sensors across the mobile market was considered out-of-
scope, informal analyses by mobile enthusiasts conclude that only four of today’s devices include
these sensors [317].

https://github.com/AmbientSensorsEvaluation
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application, while a second application, for device TT, included two connection
interfaces. The first interface was used for the NFC connection with TI′ in which
TT was set to NFC reader mode, allowing it to interact with discovered NFC
device. The second interface for TT was used for connecting with TT′ over WiFi
in which messages were relayed broadcast a UDP packet in the local network.
For both interfaces, the message transmitted on the NFC or wireless channel
included the sensor to be measured in that transaction, and a transaction ID. In
real-world scenarios, device TI′ would act as the device communicating with
TT′. However, since the scope of this paper is to evaluate the effectiveness of the
ambient environment as an anti-relay mechanism, device TT was responsible
for sending the information across a WiFi (via the hotspot functionality) for the
aforementioned synchronisation. Devices TT and TT′ were connected to the same
wireless hotspot, created for the requirements of the experiment. Lastly, the third
application running on device TT′ contained a broadcast listener for UDP packets
from TT. Upon receiving a packet from device TT, device TT′ would be able to
initiate a transaction with device TI, upon tapping the latter to the former. After
the initiation of a transaction, devices TT, TI′, and TI would start recording data
using a predefined sensor for 500ms. The use of this synchronisation set-up was
for the purposes of off-line transaction analysis, and was independent of the
measurement collection itself, i.e. the purpose of this study. Figure 7.8 presents
an overview of the recording process.

TT TI′ TT′ TI

NFC: 1) sensor|transaction ID

WiFi: sensor|transaction ID

NFC: 1) sensor|transaction ID

recordSensor()

NFC: 2) sensor|transaction ID

recordSensor() recordSensor()

NFC: 2) sensor|transaction ID

saveMeasurement() saveMeasurement()validateReceivedData()

saveMeasurement()

FIGURE 7.8: Measurement recording process.

Device Data Collection

On the Android operating system, data captured by a sensor is returned to an
application in time intervals set by the application. The rate at which data was
polled from the sensors was set at the highest available common across all three
devices.Following the recording time period, devices TI′ and TI would send
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a response message, containing the transaction ID and sensor used to TT and
TT′, respectively. Device TT would then validate the received data. The three
devices would store the recorded data in a local SQLite database, along with
the transaction ID, sequence number, timestamp and the pre-defined location in
which the recording took place. During the data analysis phase, only transactions
that existed in all three databases, based on their transaction ID, were considered.
This is also shown in Figure 7.8.

7.4.3 Data Analysis

As mentioned previously, we limited our sensor selection to the best perform-
ing sensors from our evaluation on proximity detection (Section 7.3), i.e. those
which successfully and consistently captured values within the 500ms time
limit over 1,000 transactions. The same analysis techniques were used as the
previous work for proximity detection – threshold-based analysis with the
same similarity measures, and machine learning – using the EER evaluation
metric. However, this time the illegitimate dataset, I, was created from all
measurements taken between TT and TI, as TI was located 1.5m away, i.e.
I = {(TT1, T I1), (TT2, T I2), . . . , (TTn, T In)}. The legitimate transaction set, L,
was created using the sensor measurements between TT and TI′, i.e. L =

{(TT1, T I’1), (TT2, T I’2), . . . , (TTn, T I’n)}. At first, it makes little sense to collect
data from an adversary device, TI′. However, since TI′ is in a ‘legitimate’ position
according to the terminal/PoS, i.e. NFC distance (<5cm), this pair was used as
the legitimate dataset for convenience and time-saving during field trials.

7.4.4 Results Discussion

The results for the threshold-based and machine learning analyses of this study
can be found in Tables 7.6 and 7.7 respectively. Similar to our previous study
(Section 7.3), some sensors provided some but poor discriminatory power: the
magnetic field sensor gave EERs of 36.1–43.3% in the analyses, linear acceleration
yielded EERs of 30.7–44.3%, rotation vector (28.5–32.7%), light (29.3–36.7%; the
EER of light is illustrated in Figure 7.9), and accelerometer (27.7–46.8%). The
remaining two sensors provided greater discriminatory power, namely the gy-
roscope (17.9% EER with Random Forest) and the rotation vector sensor (27.7%,
also with Random Forest).

Even in the best case, using gyroscope with random forest, it still implies that
17.9% of legitimate and illegitimate transactions would be respectively denied
and accepted incorrectly. An error rate of approximately one-in-five is even
poorer than our results in the previous study presented in the last section. A
likely reason is that the first study used measurements taken at wildly different
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TABLE 7.6: Threshold-based EERs (using the metric abbreviations
from Table 7.4).

Sensor MAE PCC C-Corr ED Coh T-FD

Accelerometer 0.494 0.477 0.590 0.468 0.507 0.590
Gyroscope 0.521 0.455 0.535 0.495 0.528 0.489
Magnetic Field 0.444 0.473 0.470 0.433 0.487 0.470
Rotation Vector 0.330 0.472 0.327 0.670 0.534 0.509
Gravity 0.521 0.490 0.401 0.289 0.503 0.362
Light 0.367 0.488 0.444 0.372 0.505 0.437
Linear Acceleration 0.482 0.536 0.503 0.506 0.443 0.493

TABLE 7.7: Estimated EER for machine learning algorithms, ob-
tained by repeating 10-fold cross-validation 10 times.

Sensor Random Naive Decision Logistic Support
Forest Bayes Tree Regression Vector

Machine

Accelerometer 0.277±0.052 0.474±0.047 0.358±0.059 0.483±0.050 0.454±0.126
Gyroscope 0.179±0.041 0.354±0.059 0.228±0.049 0.356±0.055 0.288±0.045
Magnetic Field 0.361±0.055 0.400±0.053 0.389±0.063 0.421±0.061 0.385±0.053
Rotation Vector 0.285±0.052 0.327±0.055 0.317±0.073 0.353±0.050 0.325±0.050
Gravity 0.499±0.046 0.488±0.043 0.494±0.057 0.484±0.043 0.486±0.156
Light 0.361±0.059 0.369±0.058 0.293±0.149 0.407±0.054 0.351±0.054
Linear Acceleration 0.307±0.050 0.484±0.048 0.392±0.057 0.502±0.049 0.397±0.058

FIGURE 7.9: FAR-FRR curves for the light sensor using the MAE
similarity metric.
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locations in the formation of the illegitimate transaction set. This is relevant
for relay attacks that occur at great distances, e.g. 100m–200m (the physical
distances between the university locations in the previous study). However, this
investigation aimed to evaluate ‘worst case’ relay attacks that take place in a store
queue or other close-quarters environment. From this analysis, it is difficult to
recommend any of the sensors for a single-sensor deployment for high security
applications, such as banking. Such sensors might be appropriate for low-security
access control, but we recommend that a thorough analysis of the sensors and
their performance in the chosen domain is performed prior to deployment.

7.5 Conclusion

Proximity and Relay-Attack Detection (PRAD) is an important element for many
contactless and wireless technologies. In this work, we illustrated that the via-
bility of PRAD mechanisms can be largely dependent on the time constraints
mandated by industry requirements. Contactless payment transactions for ex-
ample – whether smart card- or smartphone-based – must adhere to <3cm for
proximity and <500ms for transaction duration, as stipulated by the EMV speci-
fications. We evaluated the claim that natural ambient environments can provide
a robust PRAD, as stated by some previous literature, under industry-specified
time constraints. This was evaluated for both proximity detection (Section 7.3)
and as a relay attack detection mechanism using a test-bed that reflected an
actual attack (Section 7.4). We presented the results of a two-part evaluation
using six similarity metrics used previously and several widely-used machine
learning classifiers. In all cases, the results were far from what was claimed in
past literature; our initial results indicate that natural ambient environments
perform poorly in time-critical domains like banking and transport.

One reason that past work achieved different results is the significantly larger
sampling durations (see Section 7.2.3), which ranged up to 30 seconds [305]. The
sampling duration imposed in our experiments was in line with the performance
requirements of an EMV application, i.e. 500 milliseconds. Transportation is
another major application for contactless smart cards; in this domain, the recom-
mended transaction duration is far lower, between 300-500 milliseconds. The
500 millisecond limit in our experiment was thus an upper bound of the recom-
mendations of two significant application areas where contactless mobile phones
may be utilised. Some work, such as Shrestha et al. [302], fuse sensing modalities
in order to improve accuracy. In these past two studies, we were interested in
addressing the base case of ruling out the use of individual sensors, as per Jin et
al. [307], Ma et al. [301], Mehrnezhad et al. [306], Halevi et al. [300], and Urien
et al. [304]. We stress that evaluating multiple sensor combinations would be
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the first avenue for future work in evaluating the efficacy of ambient sensors for
proximity and relay attack detection, which has been suggested in the remaining
works, e.g. Shrestha et al. [302].

Notwithstanding, our results cast doubt over the efficacy of the previous work
in this area under the industry-specific time constraints mandated by EMV and
ITSO. Having evaluated a set of sensors available through the Android API, we
discovered that the proposed methods in related work do not necessarily scale
when sampling durations are reduced to these times. As a result, we are inclined
to reject the null hypothesis set out in Section 7.1.1 in the case of using single
sensors. This is based on the substantially high error rates (9.2% in our best case
for proximity detection using the pressure sensor with decision tree classifier;
17.9% EER for relay attack detection using the gyroscope with random forest)
versus those exhibited in existing work, e.g. up to 100% attack detection success
rates in [307] and [301], which use longer transaction durations. However, as
discussed, evaluating multiple sensors would be a logical next step in providing
stronger evidence towards rejecting the null hypothesis. Additionally, our results
provide evidence towards accepting the alternative hypothesis, also set out in
Section 7.1.1. Notably, in 7.3 of Section 7.3.2, we found that some modalities used
in existing work, such as WiFi [305], Bluetooth [303] and GPS location [301], [303],
failed to collect any data samples under the transaction duration limit. Once
again, evaluating multiple sensors would provide further evidence to this end:
work by Shrestha et al. [302] already shows that multiple inputs significantly
improves error rates using longer sampling durations. It remains to be seen,
however, whether sufficient information is captured by multiple modalities to
lower error rates to an acceptable level within the duration considered in this
work. In short, we strongly recommend that any sensor-based PRAD proposal
should be evaluated in situ based on the operating restrictions of the intended
deployment domain.

7.5.1 Future Research

In future research, we hope to investigate the following:

• Effectiveness of sensor fusion techniques with multiple input modalities. Simulta-
neously measuring multiple sensors within the transaction time duration,
and applying sensor fusion techniques in order to robustly assess whether
it does, indeed, reduce the risk associated with using sensors individually.

• Evaluating a greater diversity of devices. Re-evaluating each sensor over a
greater selection of devices. Our initial experiments in Sections 7.3.1 and
7.4.2 showed that devices behave significantly different when initiating
and collecting data from sensors over small time-frames. The Galaxy S4
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failed to initialise and record any data samples in the 500ms time-frame,
while the Nexus 5 and 9 devices managed to collect data for approximately
half of the allotted time. It is our suspicion that this is due to latencies
introduced in the OEM’s HAL for interfacing between the device software
and SoC hardware sensors, which is device-dependent. This investigation
may eventually lead to the examination of real-time operating systems
(RTOSs) for minimising data collection latencies.

• Alternative relay mediums. Our second study employed WiFi as the relay
link in each transaction. In future work, we aim to evaluate alternative
relay communication mediums, particularly Bluetooth, that an attacker
may deploy in order to mount an attack. Wireless typically differ with
respect to possible bit-rates, including their potential depreciation through
objects, such as concrete and paper. It would be interesting to evaluate the
effectiveness of various mediums in conducting successful relay attacks.





207

Chapter 8

Concluding Remarks

8.1 Summary

This thesis has shown that TEEs can be utilised to achieve a multitude of se-
curity and trust assurances for protecting critical applications and their data
aboard constrained embedded devices. The primary benefits of TEEs include
hardware-assisted protection from user- and kernel-mode adversaries that aim
to compromise data confidentiality and integrity; a trusted path between I/O
peripherals and the TEE without trusting intermediate components; and tight
integration with the underlying execution hardware used by a conventional OS,
thus maximising performance and eliminating the need for additional security
hardware modules, such as a dTPMs and SEs. However, given their relative
infancy, TEEs lack the maturity and the wealth of literature that exists, partic-
ularly in the TPM world, regarding the management, performance, under a
number of disparate applications. Consequently, many existing solutions were
simply incompatible to TEEs without extensive modifications and re-framing,
and omitted the additional benefits provided by TEEs, as well as their unique
challenges. This is further complicated by the challenges in addressing the diver-
gence in competing TEEs that feature disparate architectural and manufacturing
assumptions.

The contributions presented in this thesis have often involved referencing
and reconciling previous trusted computing literature in order to account for
the differences, challenges and benefits provided by TEEs. Ultimately, this has
resulted in contributions that go above and beyond the security, trust and per-
formance assurances offered by previous technologies, such as SEs, TPMs and
smart cards, for protecting the assets aboard constrained embedded devices.
This thesis also aimed to bridge theory and practice by backing its contributions
using performance evaluations with actual TEEs on commercial platforms. This
provided a source of quantitative measurements to evaluate the practical viability
of the proposed schemes. Moreover, we verified any proposed protocols under
known adversarial models using formal verification tools to assure correctness;
however, we must stress that the reader must be aware of the limitations of such
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tools, as discussed in Section 4.5.4 of Chapter 4. Additionally, we strived to make
the contributions agnostic to the underlying architecture in order to maximise
their applicability to any TEE.

We began in Chapter 2 by describing the system architectures of modern mo-
bile and embedded devices in order to inform subsequent discussions of secure
and trusted execution technologies. This included reviewing microcontrollers
(MCUs), single-board computers (SBCs), and modern system assembly practices
for minimising PCB sizes while retaining performance, such as system-on-chips
(SoCs), system-in-packages (SiPs) and package-on-packages (PoPs). After this, a
detailed review was presented of the evolution of secure and trusted execution
technologies, both past and present, for preserving sensitive applications and
their data. This included smart cards; Secure Elements (SEs); the Trusted Plat-
form Module (TPM); early TEEs, such as Intel TXT and AMD SVM, which were
constructed upon TPMs, Nokia ObC, Microsoft Palladium and TI M-Shield; and
the most recent developments in TEEs, such as Intel SGX and the GlobalPlatform
TEE specifications. We also discussed the Common Criteria framework in evalu-
ating these platforms in relation to their claimed security guarantees. At the end
of this chapter, a security comparison was presented in relation to the relative
capabilities of these technologies, and their ability in defending against the on-
and off-device adversaries described in the GlobalPlatform specifications. We
seen how TEEs are a promising candidate – albeit with trade-offs, particularly
with respect to hardware tamper-resistance – for protecting sensitive applications
of embedded devices used in many suggested IoT deployments.

The first contribution of this thesis, presented in Chapter 3, was an investiga-
tion of applicability of TEEs in protecting the assets of continuous authentication
(CA) schemes – an emerging paradigm for addressing the shortfalls of existing
schemes, such as PINs, hardware tokens and fingerprint recognition. In this chap-
ter, we analysed the potential assets and threats facing the implementation of CA
schemes in a standard OS environment. To counter these, we proposed a TEE-
based solution for protecting the scheme under execution and its behavioural
model, which we evaluated using a publicly-available dataset on both Intel SGX,
using an off-the-shelf Lenovo T460s device, and a Hikey LeMaker board with
ARM TrustZone. The results found that TEE-based CA is both practical and
worthwhile for protecting the run-time states of CA schemes from kernel-level
adversaries, with a modest performance overhead.

This thesis’ second contribution focussed on the construction of mutually
trusted channels between TEEs on remotely located devices that wish communi-
cate in a secure fashion without trusting intermediary components. In Chapter 4,
we proposed two protocols for providing bi-directional trust, where both devices
each host TEEs, and uni-directional trust for supporting situations where only
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one device hosts a TEE, akin to traditional remote attestation. The proposals were
evaluated on two ARM development boards reflecting the typical specifications
of SBC-based IoT devices. Our practical implementation on two Hikey Lemaker
boards exhibited approximately four-times overhead versus TLS with DHE and
RSA, with a total round-trip time of 1.7 seconds without optimisation. Moreover,
both protocols are subjected to formal symbolic analysis using Scyther against a
Dolev-Yao adversary, which found no attacks.

The third contribution addressed the challenges of tamper-resistant logging
for protecting data aboard constrained devices using TEEs for use in auditing and
forensics. The state-of-the-art of wholly cryptographic and TEE-based schemes
for preserving the confidentiality, integrity and authenticity of log records was
explored. This was followed by identifying several shortfalls in existing work
and formulating a list of the security and functional goals we aimed to tackle
with respect to constrained device logging. In light of this, we presented the
design, implementation and evaluation of a novel system, EmLog, for such pro-
tecting logs on these devices against complex software-based adversaries in the
untrusted world. The proposed scheme also offers several additional properties
over past proposals, such as public verifiability of logs and key compromise
resilience. EmLog is evaluated on three log datasets using an off-the-shelf ARM
development board with an open-source, GlobalPlatform-compliant TEE. On
average, EmLog runs with low run-time memory overhead (1MB heap and stack),
430–625 logs/second throughput, and five-times persistent storage over-head
versus unprotected logs alone.

The focus then shifted to the problem of secure and trusted remote manage-
ment of TEE-bound credentials aboard constrained devices applied to centralised
use-cases, like industrial IoT (IIoT) and smart cities. This served as the fourth
contribution of this thesis. In this chapter, we posed five challenges for deploying
IoT TEEs: remote credential backups, updates, migration and revocation, as well
as extending the work in the previous chapter for retrieving logs of IoT TEEs in a
secure and trusted fashion. To this end, we showed how the contributions from
Chapter 4 can be extended to provide a series of secure and trusted procedures
for performing credential management and audit log retrieval using mutual
attestation. The protocols are developed using the requirements and threat model
relevant to IoT TEEs, and subjected to formal verification using Scyther, which
found no attacks.

The fifth contribution of this thesis, presented in Chapter 7, segued into
investigating and evaluating the suitability of mobile sensors in protecting NFC-
based mobile transactions from relay attacks. Such attacks are a pertinent vector
for defeating the protections afforded by TEEs and misusing the credentials stored
therein during contactless transactions, e.g. payments and transport ticketing. We
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evaluated the state-of-the-art for preventing relay attacks using methods based
on detecting the environment of the communicating devices. Notably, related
work has been conducted largely independently of the time-constraints imposed
by industry, namely 500ms for EMV and 300-500ms for transport applications.
Next, a two-part study was conducted for assessing the efficacy of 17 ambient
sensors available through the Android API for proximity and relay attack detection
under a time restriction of 500ms. Our analysis, comprising both similarity-
and machine learning-based methods proposed in related work, produced poor
error rates with respect to the usability and security of even the best-performing
sensors. We subsequently call into question the applicability of these schemes
with respect to the operational timing restraints imposed in practice by industry.

It is hoped that the contributions presented throughout this thesis provide use-
ful set of proposals, recommendations and further ideas for establishing greater
security and trust assurances in TEEs on embedded devices. The contributions
were inspired towards protecting the most sensitive applications and data envis-
aged in the IoT sphere, such as in assistive technologies, logistics, industrial IoT,
and healthcare.

8.2 Future Directions and Challenges

This section highlights potential research directions and challenges, technical and
otherwise, in the deployment of TEEs on constrained devices.

8.2.1 Group TEE Attestation

In the contributions involving remote attestation, primarily Chapters 4 and 6,
we focussed on basic static attestation between two communicating entities. A
worthwhile endeavour would be the exploration of alternative attestation mecha-
nisms, such as dynamic attestation (see Section 4.2.2 of Chapter 4), which aims to
protect run-time states. Moreover, we did not generalise the proposed protocols
this to n > 2 parties. This could be potentially useful in the construction of
multi-party secure and trusted channels for, for example, sharing authentication
scores across a Body Area Network (BAN) for continuous authentication, as
proposed by Hintze et al. [318]. The generalisation of key exchange protocols,
such as (EC-)Diffie-Hellman is well-studied in related literature; however, it is
less studied how group attestation scales, besides previously mentioned work by
Asokan et al. [81] for swarm attestation, which primarily aggregates attestation
values, and not a shared secure channel between all nodes.
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8.2.2 Post-Quantum TEEs (PQ-TEEs)

Another potential research direction is the application of post-quantum cryptog-
raphy (PQC) constructs to TEEs and their supporting mechanisms. PQC is borne
from the vulnerability of the hardness assumptions of traditional cryptosystems,
such as integer factorisation (RSA), discrete logarithm problem (Diffie-Hellman)
or the elliptic-curve discrete logarithm problem (ECC), to quantum comput-
ers, principally using Shor’s algorithm. This has led to the development of
lattice- (NTRU, BLISS), hash- (Merkle signature scheme), code- (McEliece), and
isogeny-based schemes, which rely upon hardness assumptions believed to be
quantum-hard [319]–[323]. The solutions presented throughout this thesis were
not designed with quantum adversaries in mind. This also extends to commercial
solutions: Intel SGX’s remote attestation mechanism, for example, is based on
ECDH and thus vulnerable to a quantum adversary. Quantum-resistant TEE
mechanisms, however, have so far received little attention from the community.
We note that TPM attestation has began to account for these threats: both Ando
et al. [324] and Liu et al. [325] propose hash-based signatures using the Merkel
signature scheme for quantum-resistant TPM remote attestation quotes, with ap-
proximately five-times overhead versus classical-based ECDSA reported in [325].
However, the literature remains sparse in this area. We are currently unaware of
any work that has began to explore quantum-resistant cryptographic algorithms
for TEEs, such as for attestation, secure provisioning and storage.

8.2.3 Evaluating ARM TrustZone-M

The implementations described in Chapters 3, 4 and 5 were evaluated using
a development board based on an ARM Cortex-A53, which instantiates a TEE
using TrustZone for the ARMv8-A architecture (TZ-A). Section 2.4.4, however,
described TrustZone for ARMv8-M (TrustZone-M, or TZ-M), which provides the
same high-level features but differs significantly in how TrustZone is realised for
more constrained, Cortex-M based platforms, like embedded microcontrollers.
Notably, TZ-M aims to minimise the overhead of secure/non-secure world switch-
ing through, for example, sharing virtually all general-purpose registers between
the worlds and avoiding the use of a secure monitor exception handler to mediate
world switches. However, a lack of access to development kits precluded an
evaluation of TZ-M in this thesis. As such, in future work, it would be useful to
re-visit the implementations in the above chapters to empirically evaluate the per-
formance of TZ-A versus TZ-M. In particular, assessing the energy consumption
and latency benefits yielded during world context switches would be useful.



212 Chapter 8. Concluding Remarks

8.2.4 Ethics

The application of TEEs also has challenges of an ethical dimension. It is easy
to see how TEEs can be used to securely protect user credentials, for payments
and biometrics, and other data beneficially. However, it is similarly conceivable
how TEEs could be misused to implement technologies that significantly impede
on users’ privacy, with virtually no control offered to end-users under a closed-
access model. An extreme example being a tracking TA that harvests location data
from a GPS module over a trusted path in order to inform targeted advertising.
Another example is a ‘secure’ voice or messaging that service that encrypts
messages under a TEE-bound key accessible to the authorities of an intrusive
organisation or even government. TEE-enforced DRM, such as Widevine used
by Netflix and Amazon Prime Video, edges towards this dilemma. DRM has
long been criticised for removing freedom of choice for users, but also as a
necessary step for protecting intellectual property. This dilemma, with respect to
trusted computing, has long-standing roots dating back to the early 2000s on the
development of Palladium [181]. Some privacy and free software activists, such
as Richard Stallman, have even deemed trusted computing as ‘treacherous’ for
removing control away to users to the benefit of private organisations [326]. This
thesis avoided potentially contentious applications, focussing on ones generally
beneficial applications to both users and enterprises. However, it is important
for TEEs researchers and developers to remain ethically aware of proposing and
implementing solutions that infringe on users’ liberty.

8.2.5 TEE Intrusion Tolerance

While TEEs undoubtedly exhibit greater assurances relative to standard OS envi-
ronments (REEs), they are not evaluated to the same rigour as Secure Elements
(SEs) and smart cards. Modern TEEs are typically written in memory-unsafe
languages, i.e. C/C++, and evaluated to a lower assurance level versus smart
cards and secure elements: CC EAL2 for TEEs versus CC EAL4+ for smart cards
and SEs. This implies TEEs are assured with less rigour regarding their stated se-
curity goals compared with SEs and smart cards. Moreover, TEEs consider many
threats out of scope: errors in inter-world API logic and function definitions, e.g.
that contain buffer overflow vulnerabilities from unchecked array bounds, could
undermine a TEE-based security solution.

A final future research direction might be the evaluation of approaches that
aim to detect and limit the damage caused by TA errors, such as local dynamic
attestation for internal TAs, or TEE OS IDSs that continually monitor TA states
for detecting unexpected behaviour. This is likely to lead to an examination of
literature in field of intrusion tolerance – well-explored for aircraft and industrial
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control systems, and safety-critical systems generally – for providing guaran-
tees regarding security properties even when one or more TEE components are
compromised. This includes backup mechanisms, for immediately backing data
to more trusted elements for forensic analysis in the detection of a potential
compromise; redundancy mechanisms that provide multiple replicated sources
of input, e.g. sensor inputs, for detecting whether values have been corrupting
using statistical measures; and forwards error recovery, in which the system
detects a compromise and moves to a more trusted element, such as a SE, for
performing subsequent operations [327].
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Appendix A

Protocol Supplements for Chapter 4

A.1 BTP Protocol Scyther Source

1 hashfunction h;
2 // Attestation Request
3 const AttReq: Function;
4 // Attestation response (quote)
5 usertype Quote;
6 usertype SessionKey;
7 // Diffie-Hellman components
8 usertype DH;
9

10 protocol btp(TASD,TARE)
11 {
12 macro Scookie = h(gSD,nsd,TASD,TARE);
13 role TASD
14 {
15 fresh nsd: Nonce;
16 var nre: Nonce;
17 fresh qsd: Quote;
18 var qre: Quote;
19 var K: SessionKey;
20 fresh gSD: DH;
21 var gRE: DH;
22

23 send_1(TASD, TARE, nsd, gSD, AttReq, Scookie);
24

25 recv_2(TARE, TASD, nre, gRE,
26 {{TARE,TASD,nre,nsd,gSD,gRE}sk(TARE),
27 {qre, nre, nsd}sk(TARE)}K,
28 AttReq);
29

30 send_3(TASD,TARE,
31 {{h(TASD,TARE,gRE,gSD,nre,nsd)}sk(TASD),
32 {qsd,nre,nsd}sk(TASD)}K,
33 Scookie);
34

35 claim_a1(TASD, Alive);
36 claim_a2(TASD, Niagree);
37 claim_a3(TASD, Nisynch);
38 claim_a4(TASD, Secret, qsd);
39 claim_a5(TASD, Reachable);
40 claim_a6(TASD, SKR, K);
41 }
42

43 role TARE
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44 {
45 fresh nre: Nonce;
46 var nsd: Nonce;
47 fresh qre: Quote;
48 var qsd: Quote;
49 fresh K: SessionKey;
50 fresh gRE: DH;
51 var gSD: DH;
52

53 recv_1(TASD, TARE, nsd, gSD, AttReq, Scookie);
54

55 send_2(TARE, TASD, nre, gRE,
56 {{TARE,TASD,nre,nsd,gSD,gRE}sk(TARE),
57 {qre, nre, nsd}sk(TARE)}K,
58 AttReq);
59

60 recv_3(TASD,TARE,
61 {{h(TASD,TARE,gRE, gSD, nre,nsd)}sk(TASD),
62 {qsd,nre,nsd}sk(TASD)}K,
63 Scookie);
64

65 claim_b1(TARE, Alive);
66 claim_b2(TARE, Niagree);
67 claim_b3(TARE, Nisynch);
68 claim_b4(TARE, Secret, qre);
69 claim_b5(TARE, Reachable);
70 claim_b6(TARE, SKR, K);
71 }
72 }

A.2 UTP Protocol Scyther Source

1 protocol utp(UASD,TARE)
2 {
3 hashfunction h;
4 // Attestation Request
5 const AttReq: Function;
6 // Attestation response (quote)
7 usertype Quote;
8 usertype SessionKey;
9 // Diffie-Hellman components

10 usertype DH;
11 macro Scookie = h(gSD,nsd,UASD,TARE);
12 role UASD
13 {
14 fresh nsd: Nonce;
15 var nre: Nonce;
16 var qre: Quote;
17 var K: SessionKey;
18 fresh gSD: DH;
19 var gRE: DH;
20

21 send_1(UASD,TARE, nsd, gSD, AttReq, Scookie);
22

23 recv_2(TARE, UASD, nre, gRE,
24 {{TARE,UASD,nre,nsd,gSD,gRE}sk(TARE),
25 {qre,nre,nsd}sk(TARE)}K);
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26

27 send_3(UASD,TARE,
28 {{h(UASD,TARE,gRE,gSD,nre,nsd)}sk(UASD)}K,
29 Scookie);
30

31 claim_a1(UASD, Alive);
32 claim_a2(UASD, Niagree);
33 claim_a3(UASD, Nisynch);
34 claim_a5(UASD, Reachable);
35 claim_a6(UASD, SKR, K);
36 }
37

38 role TARE
39 {
40 fresh nre: Nonce;
41 var nsd: Nonce;
42 fresh qre: Quote;
43 fresh K: SessionKey;
44 fresh gRE: DH;
45 var gSD: DH;
46

47 recv_1(UASD, TARE, nsd, gSD, AttReq, Scookie);
48

49 send_2(TARE, UASD, nre, gRE,
50 {{TARE,UASD,nre,nsd,gSD,gRE}sk(TARE),
51 {qre,nre,nsd}sk(TARE)}K);
52

53 recv_3(UASD,TARE,
54 {{h(UASD,TARE,gRE, gSD,nre,nsd)}sk(UASD)}K,
55 Scookie);
56

57 claim_b1(TARE, Alive);
58 claim_b2(TARE, Niagree);
59 claim_b3(TARE, Nisynch);
60 claim_b4(TARE, Secret, qre);
61 claim_b5(TARE, Reachable);
62 claim_b6(TARE, SKR, K);
63 }
64 }
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Appendix B

Sensor Descriptions

This appendix provides a short description of the functionality of widely-deployed
mobile and embedded sensors. This selection is drawn from those available
through the Android Software Development Kit (SDK) [316].

• Accelerometer. The accelerometer sensor – deployed in most modern
smartphones – measures the acceleration applied to the device on the x, y
and z axes; its units are metres per second per second (ms−2).

• Ambient Temperature. The ambient temperature sensor returns the room
temperature in degrees Celsius (◦C).

• Bluetooth. Bluetooth is a technology that facilitates wireless communica-
tion and operates in the ISM band centred at 2.4 gigahertz. As a proximity
sensor, Bluetooth can be used to collect and measure the identity of Blue-
tooth devices in the vicinity, including their advertised device names and
MAC addresses.

• Geomagnetic Rotation Vector (GRV). The GRV sensor measures the rota-
tion of the device using the device’s magnetometer and accelerometer; it
returns a vector containing the angles that the device is rotated in the x, y
and z axes.

• Global Positioning System (GPS). GPS is based on satellite-based global
positioning and velocity measurement. A latitude and longitude pair is
returned, representing a geographical location on Earth.

• Gravity. The gravity sensor on mobile handsets measures the effect of
Earth’s gravity on the device. It is measured in metres per second per
second (ms−2).

• Gyroscope. The gyroscope measures the rate of rotation of the device about
the x, y and z axes; its units are radians per second (rads−1).

• Relative Humidity. The relative humidity sensor returns the percentage of
the relative ambient humidity in the air.
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• Light. The light sensor measures the surrounding lighting conditions.
Android measures this quantity in lux.

• Linear Acceleration. The linear acceleration sensor measures the effect of
a device’s movement on itself; its units are metres per second per second
(ms−2).

• Magnetic Field. The magnetic field sensor detects the Earth’s magnetic
field along three perpendicular axes x, y and z. Android measures these
values in microteslas (µT ).

• Network Location. A latitude and longitude pair is returned, representing
a geographical location on Earth with less fidelity compared to GPS using
cell tower and Wi-Fi signals. It is advised to use this method in situations
requiring less battery power, fast repsonses and in indoors environments.

• Pressure. The pressure sensor measures the atmospheric pressure sur-
rounding the mobile handset. It is measured in hectopascals (hPa).

• Proximity. The proximity sensor detects and measures an object placed
within its detection range. It measures the distance to that object in centime-
tres. On many devices, this sensor returns only a boolean value, declaring
whether something is in close proximity to the device or not.

• Rotation Vector. Rotation vector is a software sensor, similar to the GRV,
but also incorporates the gyroscope. The returned values represent the
angles which the device has rotated through the x, y and z axes.

• Sound. A waveform captured over some time period t and at some sam-
pling rate using the device’s on-board microphone.

• WiFi. Traditional IEEE 802.11 WiFi can be used as a sensor to detect the
identifies of the networks in the vicinity of the mobile device, including
their MAC addresses and ESSIDs.
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