
A New Approach to Complex Dynamic Geofencing
for Unmanned Aerial Vehicles

Vihangi Vagal
Risk Advisory
Deloitte LLP

London, United Kingdom
vihangiv@gmail.com

Konstantinos Markantonakis
Information Security Group

Royal Holloway University of London
Egham, United Kingdom

k.markantonakis@rhul.ac.uk

Carlton Shepherd
Information Security Group

Royal Holloway University of London
Egham, United Kingdom

carlton.shepherd@rhul.ac.uk

Abstract—The anticipated widespread use of unmanned aerial
vehicles (UAVs) raises significant safety and security concerns,
including trespassing in restricted areas, colliding with other
UAVs, and disrupting high-traffic airspaces. To mitigate these
risks, geofences have been proposed as one line of defence, which
limit UAVs from flying into the perimeters of other UAVs and
restricted locations. In this paper, we address the concern that
existing geometric geofencing algorithms lack accuracy during
the calculation of complex geofences, particularly in dynamic
urban environments. We propose a new algorithm based on
alpha shapes and Voronoi diagrams, which we integrate into
an on-drone framework using an open-source mapping database
from OpenStreetMap. To demonstrate its efficacy, we present
performance results using Microsoft’s AirSim and a low-cost
commercial UAV platform in a real-world urban environment.

I. INTRODUCTION

Geofencing is a widely used security technique for pre-
venting UAVs from flying into controlled airspaces, such as
power plants, airports, and military installations. In general,
geofences compare the UAV’s current geographical location
with predefined or dynamically identified no-fly zones (NFZs)
and other restricted areas. The UAV operator is then notified
of any potential or existing contraventions. On some UAV
platforms, this may be followed by the termination of the
drone’s rotors or the automatic triggering of an emergency
landing. Geofences are also used to avoid dangerous UAV-to-
UAV collisions, particularly in urban airspaces [1]–[3]. Numer-
ous commercial and non-commercial geofencing systems have
already been developed, such as NASA’s Safeguard project [4]
and DJI’s Geospatial Environment Online (GEO) [5] system.

Existing geofencing algorithms, like polygonal- and
circular-based geofencing, enclose restricted regions using
geometric shapes/boundaries to which the UAV’s current lo-
cation is compared. This paradigm is inherently reliant on the
accuracy of the geometric boundary with respect to a restricted
physical area, e.g. airport, prison, or school. If the geofence
boundary is larger than the physical object in reality, then the
UAV may be prevented from entering legitimate locations. In
urban environments, this may arise if restricted areas/NFZs are
close to residential areas. Conversely, if the geofence is smaller
than the physical object, then operators run the risk of mid-
air UAV collisions and inadvertently entering NFZs, which
is a criminal offence in many jurisdictions. This challenge

is most pronounced in dynamic UAV environments, where
precise geofences may not easily be determined in advance
and must be continuously monitored and re-evaluated.

In light of these issues, we evaluate a new approach to
geometric geofencing based on the application of α-shapes,
proposed by Edelsbrunner et al. [6], and Voronoi diagrams.
We integrate our proposal using OpenStreetMap and provide
an empirical analysis of existing geofencing techniques using
Microsoft’s AirSim and a Navio2 UAV in a real-world urban
environment in the United Kingdom. This analysis includes
experimental results of the accuracy and performance of our
proposal against traditional polygonal geofencing.

We anticipate that our proposal will provide a new method
for mitigating mid-air collisions, e.g. for UAV swarms, and
for preventing incursions into restricted airspaces. While the
focus of this paper is UAVs, geofences are also used in fleet
and freight management, maritime scenarios, and for user
authentication [7]–[9]. Our proposed methods may also be
applicable in these domains. In short, our contributions are
as follows:

• An analytical and experimental comparison of existing
geofencing techniques, their accuracy, performance, and
shortcomings.

• The evaluation of a novel geofencing method based on α-
shapes and Voronoi diagrams, which utilises an on-drone
geofencing database.

• Implementation and experimental results of our pro-
posed technique within a simulated environment using
Microsoft’s AirSim and an urban deployment using a
Navio2-based UAV.

II. GEOFENCING METHODS

A. Overview and Setup

Geofences typically fall into one of two paradigms: static
geofences remain the same overtime over restricted regions,
e.g. airports and military bases, which are referenced from
a database of predefined locations. Dynamic geofences are
generated in real-time around unforeseen sensitive areas and
obstructions on the UAV’s flight path; for example, as spheres
around other UAVs. Both approaches necessitate up-to-date
geofencing databases and reliable location data feeds.

Fig. 1: Dual geofencing used by Safeguard [11], showing NFZ
(red), termination (orange) and warning areas (yellow).

Besides methods of generation, geofences can be cate-
gorised into three modes of operation. Keep-in geofences limit
UAVs from flying outside a predefined boundary. An example
is NASA’s UAS Traffic Management (UTM) system, which
uses height, vertical and horizontal buffers for geospatial
containment with respect to a cylindrical volume surrounding
the UAV [10]. Keep-out geofences, meanwhile, are formed
around restricted areas to prevent UAVs from flying into them.
DJI, a leading commercial drone manufacturer, uses keep-out
geofences for its UAVs. DJI UAVs are restricted to operate
in specific geofenced areas, including airports, prisons, and
power plants. The system employs an ‘enhanced warning
zone’ around NFZs in which drone pilots are notified. If the
NFZ is violated, the operator loses control over the UAV
before undergoing an immediate landing procedure; the UAV
cannot take off or power-up within an NFZ [5]. Lastly, dual
geofences use keep-in and keep-out methods, which can be
beneficial in urban environments [1]. They limit UAVs to a
set area from the operator while respecting NFZs within that
area. The NASA Safeguard system uses such an approach [4],
[11], which uses multiple warning and UAV termination layers
(see Fig. 1).

In this work, we consider geofencing from the perspective
of a UAV that communicates with a ground control station
(GCS). The essential components of such a setup are shown
in Fig. 2 and described as follows:

• Global navigation satellite system (GNSS): Provides the
UAV’s current location in the form of latitude, longitude
and altitude coordinates in real time. GPS, GLONASS,
BDS, or Galileo may be used depending on the target
deployment region.

• Ground Control Station (GCS): Communicates with the
UAV during its operation, which may be used for direct
control (manual operation) and for displaying geofencing
infringements to the operator.

• Telemetry module (TM): The ground telemetry module
is attached to the GCS and the air telemetry module to
the drone. The UAV and GCS send and receive essential
data using these modules.

• Radio-frequency transceiver (RF): The RF module is

Fig. 2: High-level GCS-to-UAV communication architecture.

part of the GCS; it is coupled with TM and the antenna
to communicate with the UAV.

• Flight controller: A hardware-firmware setup whereby
UAV actuators are synchronously connected and con-
trolled; ArduPilot [12], PX4 [13], Cleanflight [14],
Navio [15], and Betaflight [16] are some widely used
flight controllers for commercial UAVs.

• Geofencing database: A database referenced by the
UAV that contains the details of restricted locations.
The database may include coordinates of those regions
and additional restrictions, such as permitted times of
operation, noise levels, height, and video restrictions.

Today’s commercial UAVs are heavily reliant on GNSS
measurements for detecting potential and current geofence
incursions. This is performed by comparing measurments to
those in a geofencing database using a desired geometric ge-
ofencing algorithm (see Section II-B), which can be integrated
into a GCS or on the UAV itself, including within autopilot
modules. Geofences may be predetermined during the mission
planning stage or by dynamically referencing a data source
mid-flight. In both cases, geofences may be created with
the assistance of open-source or proprietary mapping tools
in tandem with human input and/or artificial intelligence. It
is important to note that inaccurate and imprecise geofence
definitions, GNSS sensor failures, adverse weather conditions,
and actuator malfunctions may all lead to incursions into
restricted airspaces.

B. Geometric Algorithms

Geometric algorithms are used to continuously evaluate
whether a UAV’s GNSS coordinates are in contravention of
active geofences in R2 or R3 Euclidean space.1 Common
geometric methods include polygonal, spherical, cylandrical,
and elliptical geofencing [1], [3], [17], [18].

For a point of interest, p, e.g. the UAV’s current location,
polygonal geofencing operates by projecting an infinite ray,
γ, through p. p is considered to be within the geofence’s

1Two-dimensional geofencing is typically used where the UAV’s latitude
and longitude are restricted, but not its altitude.

Fig. 3: Two α-shapes of a discrete set of points in R2 using
high (left) and lower (right) values of α [19].

Fig. 4: Generating an α-shape from disks with radius α [20].

perimeter if the number of edges that γ intersects is odd on
either side of p. In comparison, spherical geofencing computes
the absolute distance, d, between the centre of the sphere of
radius r and a point of interest. A point is considered inside
the boundary if d < r. This method has lower computational
complexity than polygonal geofencing, but lacks the ability to
tightly enclose complex physical locations or objects. Circular
geofencing is the two-dimensional analogue of this method.
Cylandrical and elliptical geofences function similarly by
forming virtual cylinder- and ellipse-based perimeters and test-
ing whether the UAV’s coordinates lie within those perimeters.

The main drawback of non-polygon methods is that the dis-
tance between object edges and the drawn boundary may sig-
nificantly differ for complex, polygon-shaped objects. These
methods make it difficult to precisely enclose restricted areas,
particularly when multiple restricted areas are nearby. This is
further compounded by the use of buffer spaces for mitigating
operational uncertainties, such as adverse weather conditions.
In urban environments, it is conceivable that the interference
between multiple buffered geofences may unnecessarily im-
pede UAV flight plans and the reachability of destinations.

C. Evaluated Method

To address the shortfalls of existing geometric algorithms
for complex dynamic environments, we evaluate a novel
framework based on the application of alpha shapes [6].

An alpha shape, or α-shape, of a discrete set of points,
S ∈ Rn, is a polytope determined from S and a real value, α.
It is considered a subgraph of the Delaunay triangulation and

a generalisation of the convex hull, which is the intersection
of all convex sets containing S. When α → ∞, the α-shape
converges to the convex hull of S; as α → 0, the α-shape
degenerates to the point set S. Intuitively, one can tailor this
value, 0 ≤ α ≤ ∞, to produce an alpha shape graph of varying
fineness, as shown in Fig. 3. Alpha shape graphs have already
been shown to be an effective method for generating keep-in
and keep-out geofences in complex urban environments [1].
More formally:

Definition 1 (Alpha shapes [6], [19]). Let a generalised disk
of radius, r, have the following properties:

• If α > 0, it is an ordinary closed disk of radius r = 1/α.
• If α = 0, it is a half-plane.
• If α < 0, it is the complement of a closed disk with
r = −1/α.

Given a set of points, S and a value for α, an alpha shape
graph is constructed as follows:

1) For each point, pi ∈ S, create a vertex vi.
2) Create an edge between two vertices vi and vj , i 6=

j, when there exists a generalised disk with r = 1/α
containing S and which satisfies the property that pi
and pj lies on its boundary (Fig. 4).

Voronoi diagrams, also known as Dirichlet tessellations, can
also be combined with α-shapes. A Voronoi diagram is a
tessellation method for partitioning a discrete set of points,
S, as such:

Definition 2 (Voronoi diagram). Let d be a distance function,
such as the Euclidean distance, between two points in a finite
set, (pi, pj) ∈ S. The collection of all points closest to pi ∈ S
is known as the Voronoi region, VS(pi), for a metric space,
X , e.g. R3: VS(pi) = {x ∈ X | d(x, pi) ≤ d(x, pj) ∀ i 6=
j}. The Voronoi diagram, V(S), is then defined as V(S) =
{VS(p1), VS(p2), . . . , VS(pn)}.

Voronoi diagrams have been proposed in the UAV path
planning literature as an efficient method for circumnavi-
gating obstructions and restricted areas in dynamic environ-
ments [21]–[23]. It is possible to use weighted Voronoi graphs
in which weights are allocated to graph edges to inform the
difficulty of traversing challenging areas [21]. The shortest
path between two points can then be deduced using a path
finding method, such as A* search or Dijkstra’s algorithm.
In this work, we propose a combination of Voronoi diagrams
and α-shapes, illustrated in Fig. 5, for unifying the benefits
of α-shape geofencing and the path planning applications of
Voronoi diagrams.

III. SYSTEM WORKFLOW

From a UAV system-level perspective, the flowchart of
our geofencing method contains three main stages shown
in Fig. 6. The first stage is an initialisation step for en-
forcing the activation of the UAV’s geofencing functionality
and ascertaining its current location. Next, in stage two,
the platform loads the geofencing repository, i.e. the list of

Fig. 5: Combining an α-shape and a Voronoi diagram to
form geofencing boundaries (blue) with internal edges for
facilitating UAV path planning [24].

NFZs and restricted airspaces, and computes the α-shapes
corresponding to these locations on the UAV’s flight path.
The coordinates of the α-shapes are then stored for future
reference; the pre-computation of α-shapes before a take-off
allows for faster evaluation and lower response times mid-
flight. This repository can be acquired in an online fashion or,
in offline environments, the UAV may receive a recent copy of
the geographic operating environment pre-flight. The UAV’s
current location is then compared to these shapes to detect
current and potential geofencing violations. Lastly, stage three
alerts the UAV operator if a geofencing violation is detected;
if needed, the UAV flight controller may terminate the rotors
or initiate an emergency landing.

IV. IMPLEMENTATION

A. AirSim Experiments

AirSim is a cross-platform, open-source simulator devel-
oped by Microsoft for autonomous vehicle research based
on the Unreal Engine [25]. It supports software-in-the-loop
simulation with widely used, off-the-shelf flight controllers,
such as the PX4 and ArduPilot, and hardware-in-loop with
PX4 within a virtual environment (Fig. 7). AirSim provides
access to C++ and Python APIs for vehicle control and to
retrieve continuous information about the target vehicle. We
used these to implement and trial our proposed geofencing
method, including its comparison to existing geofencing meth-
ods, prior to a real-world deployment. The simulator uses
the NED coordinate system, i.e. X (horizontal movement), Y
(vertical moment), Z (altitude) coordinates, which was used
as the basis for determining the UAV’s location within the
aforementioned workflow in Fig. 6. The AirSim built-in GPS
module was used to ascertain the UAV’s current location.

The algorithm first computes the nearest objects to the
UAV using the pre-computed database of objects in the virtual
environment. In our implementation, this was stored as a JSON

Start

End

Check if the geofence function is enabled

Enable geofence

Get the current location of
the drone

Check the geofence repository

Check if the function is executed for the first time

Import geofencing repository

Compute and store alpha shapes for
all locations

Calculate the distance of the drone
from the nearest geofenced region

Check for possible geofence
violation

Alert the drone pilot and alter the flight path

Check if the flight path has been altered

Perform a safe landing Check if the drone mission has
ended

Yes

No

Yes No

Yes

No

YesNo

Stage 1

Stage 2

Stage 3

Yes

No

Fig. 6: System flowchart.

file, which was parsed before computing and saving the α-
shapes for the current operating region. For the computation
of the α-shapes themselves, we leveraged the alphashapes
Python package [26]. Using this, we instrumented the sim-
ulation platform to implement a keep-out geofencing around
restricted objects. Moreover, we implemented keep-in geofenc-
ing by limiting the UAV to a particular geographic area within
the virtual environment.

The UAV’s flight path was determined from the user-
generated inputs through the Visual Studio command prompt.
The path heading was automatically re-adjusted when there
is a possibility of entering a restricted location; if this was
overridden by the user, then the UAV undergoes an emergency
landing before it enters that area.

B. Navio2 Drone Platform

After prototyping the proposed method in AirSim, we then
evaluated its performance in an urban environment using an
off-the-shelf, low-cost (<$500 USD) commercial drone plat-
form. This made use of a Navio2 add-on shield [15]—an au-
topilot system for the widely used Raspberry Pi board [27]—to
implement a quadcopter-based UAV (Fig. 8). The components
for implementing the hardware platform are as follows:

Fig. 7: AirSim UAV simulation platform [25].

• Raspberry Pi 3B+: A single-board computer with a
Broadcom BCM2837B0 system-on-chip (with a quad-
core ARM Cortex-A53 at 1.4GHz), 1GB DDR2 SRAM,
dual-band wireless LAN, Bluetooth 4.2/BLE, and a 40-
pin general-purpose input/output (GPIO) interface [27].

• Navio2 Shield: A Raspberry Pi add-on shield that pro-
vides a GNSS receiver—supporting GPS, GLONASS,
Galileo and BDS—dual IMUs, a remote-controlled I/O
co-processor with 14 PWM output channels for motors
and servos, and a high-resolution barometer. The Navio2
supports the Ardupilot open-source autopilot firmware
and exposes Python APIs for software-based control; its
average current draw is 150mA during operation.

• Radio Controller: A six-channel transceiver for enabling
the UAV to be controlled manually by the user.

• Telemetry: A pair of air and ground modules attached
to the drone and ground control station. The telemetry
modules communicate in-flight data, e.g. position and
speed, wirelessly between the UAV and GCS.

• Battery: A lithium polymer (LiPo) battery supplies
power to the drone with a 3000mAh capacity.

• Actuators: A combination of motors, propellers and
ESCs were selected based on the thrust-to-weight ratio;
specifically, 30A brushless motors with 20V ESC and
1048 propellers were used. (ESCs are only required when
using brushless motors; brushed motors only need a direct
current voltage input).

• MavProxy: The MAVProxy is Ardupilot’s GCS imple-
mentation a UAVs. It provides a portable GCS for UAVs
that support the MAVlink Protocol [28].

• Mission Planner: The Ardupilot mission (APM) planner
is an open-source ground station application for MAVlink
based autopilots [12]. It assists in mission planning using
GPS way-points and control events.

C. Geofencing Database

We used OpenStreetMap as the mapping source for under-
pinning our geofencing database. OpenStreetMap is an open-
source database that supports WGS-84 coordinates practised
by many GNSS units [29]. Geographical information about

Fig. 8: Assembled Navio2-based quadcopter.

supported countries, e.g. USA and UK, can be exported in
OSM format from the OpenStreetMap website. This data can
be imported into a geographic information system application,
like QGIS [30], for exporting maps into alternative file formats
and coordinate systems, i.e. WGS-84 and OSGB-36.

For our experiments, we imported geographic information
about our testing environment, located in the south east
region of the United Kingdom, into QGIS (Fig. 9) which
was subsequently exported to JSON format. This information
contains features about notable physical locations, e.g. location
type (military, airport, leisure etc.), its name, short description,
and coordinates. Listing 1 shows a sample JSON entry. The
features and coordinates were extracted from the file in Python
for constructing the α-shapes for each restricted location.

{‘type’: ‘Feature’, ‘properties’: { ‘osm_id’:
‘533025’, ‘osm_way_id’: null, ‘name’: ‘Canada
Copse’, ‘type’: ‘multipolygon’, ‘aeroway’: null,
‘amenity’: null, ‘admin_level’: null, ‘barrier’
: null, ‘boundary’: null, ‘building’: null, ‘
craft’: null, ‘geological’: null, ‘historic’:
null, ‘land_area’: null, ‘landuse’: ‘forest’, ‘
leisure’: null, ‘man_made’: null, ‘military’:
null, ‘natural’: null, ‘office’: null, ‘place’:
null, ‘shop’: null, ‘sport’: null, ‘tourism’:
null, ‘other_tags’: null }, ‘geometry’: { ‘type’
: ‘MultiPolygon’, ‘coordinates’: --truncated--

Listing 1: Sample JSON from OpenStreetMap.

We note that, while OpenStreetMap is a widely used geo-
graphic database, it has several shortcomings. Its development
is community-driven and may lack the maintenance and sup-
port of proprietary solutions. It also lacks information about
ambient noise, pollution, altitude, and other environmental
factors that may practically limit the operation of UAVs.

V. EVALUATION

After computing 1,309 geofences in the urban environment,
it was revealed that the proposed method consistently and
more tightly enclosed physical locations compared to dy-
namically drawn polygonal geofences (i.e. not with human
input). Fig. 10 shows an example polygonal geofence, which

Fig. 9: QGIS visualisation.

Fig. 10: Polygonal geofence. Fig. 11: Proposed method.

inaccurately enclosed a far greater physical area than our
proposed method shown in Fig. 11. This process involved
labour-intensive human assessment to evaluate the accuracy of
both algorithms with respect to ground truth location data. The
initial results are promising, but further experiments across
varying geographic regions are warranted to reliably calculate
the accuracy of our method.

The computational performance of both approaches was
also evaluated at each workflow stage from from Section III.
Fig. 12 shows the execution time of the proposal versus
polygon-based geofencing using AirSim and our physical UAV
platform at each stage (on the x-axis). After the initial compu-
tation of the geofences, the execution time for computing the
geofences declines to under 500ms on our physical platform.
Generally, the polygonal and proposed methods execute within
the same order of magnitude—under three seconds for all
phases—during operation. However, on average, the proposed
method incurs an approximately one second overhead for
geofence computation using the Navio2 UAV. Table I presents
a comparison of the algorithms based on time and the evalua-
tion platform. Compared to polygonal geofencing, our method
requires an additional 1–2 seconds on both AirSim and the
physical UAV to generated the geofenced areas. The average
run-time execution time for detecting geofence violations is
broadly the same: for AirSim, this was 0.006s vs. 0.006s
(polygonal vs. proposed respectively) and, for Navio2, this was
0.269s vs. 0.270s.

In summary, the results demonstrate that our proposal has
more reliable results than polygon geofencing in relation
to geofencing accuracy. This comes with the drawback of

Comparison of Units Sold by Year

EXECUTION TIME PROPOSED
ALGORITHM

(AIRSIM)

PROPOSED
ALGORITHM

(DRONE)

POLYGONAL
ALGORITHM

(AIRSIM)

POLYGONAL
ALGORITHM

(DRONE)

Computing
Geofence

2.940 2.338 0.600 1.185

Execution 1 1.520 0.270 2.829 0.269

Execution 2 0.007 0.270 0.270 0.269

Execution 3 0.006 0.270 0.006 0.269

End 0.000 0.000 0.000 0.000

Comparison of Execution Time on the Drone and Simulator

Ex
ec

ut
io

n
tim

e
(S

ec
on

ds
)

-0.100

0.371

0.843

1.314

1.786

2.257

2.729

3.200

Phases of the geofence functionality
Computing Geofence Execution 1 Execution 2 Execution 3 End

Proposed Algorithm (Drone) Polygonal Algorithm (AirSim) Proposed Algorithm (AirSim)
Polygonal algorithm (Drone)

Fig. 12: Execution time of polygonal geofencing versus our
proposed method on AirSim and the Navio2 UAV platform.

Comparison
Stage Platform

Polygonal
Algorithm

Proposed
Algorithm

AirSim geofence
computation 0.698 seconds 3.44 seconds

AirSim average
detection time 0.006 seconds 0.006 seconds

Navio2 geofence
computation 1.185 seconds 2.338 seconds

Navio2 average
detection time 0.269 seconds 0.270 seconds

TABLE I: Average performance comparison.

a moderate geofence computation overhead, which can be
partially mitigated by determining static α-shape geofences
before the flight commences. In general, our investigations
suggest that the proposed algorithm provides greater accuracy
for complex geofences without a dramatic performance impact
in practice.

VI. CONCLUSION

Existing geofencing algorithms can struggle with precisely
enclosing restricted airspaces in dynamic environments; for
example, when generated in-flight. This can pose safety and
accessibility issues in complex urban areas with an abundance
of closely located restricted locations, e.g. airports, schools
and prisons, and permitted airspaces. To address this, we
designed and evaluated a new geofencing solution for such
scenarios using α-shapes and Voronoi diagrams. We imple-
mented our proposal in a simulated and real-world urban
environment using a low-cost, commercially available drone
platform. Our results suggest that greater geofencing precision
can be achieved while retaining computational performance
in the same order of magnitude as polygonal geofencing. We
hope that our work provides UAV system designers with a
useful option for generating accurate geofences in complex
and dynamic operating environments.

REFERENCES

[1] J. Cho and Y. Yoon, “How to assess the capacity of urban airspace: A
topological approach using keep-in and keep-out geofence,” Transporta-
tion Research Part C: Emerging Technologies, vol. 92, pp. 137–149, Jul.
2018.

[2] M. N. Stevens and E. M. Atkins, “Multi-mode guidance for an indepen-
dent multicopter geofencing system,” in 16th AIAA Aviation Technology,
Integration, and Operations Conference, 2016, p. 3150.

[3] M. Stevens and E. Atkins, “Geofence definition and deconfliction for
UAS traffic management,” IEEE Transactions on Intelligent Transporta-
tion Systems, 2020.

[4] E. T. Dill, R. V. Gilabert, and S. S. Young, “SAFEGUARD: An assured
safety net technology for UAS,” in IEEE/AIAA 37th Digital Avionics
Systems Conference. IEEE, 2018.

[5] DJI, “Fly Safe Drone Flying Tips, Policies & Regulations, and More
DJI,” 2020, https://www.dji.com/uk/flysafe [Accessed: 8th June 2021].

[6] H. Edelsbrunner, D. Kirkpatrick, and R. Seidel, “On the shape of a set of
points in the plane,” IEEE Transactions on Information Theory, vol. 29,
no. 4, pp. 551–559, 1983.

[7] N. Wawrzyniak and T. Hyla, “Application of geofencing technology for
the purpose of spatial analyses in inland mobile navigation,” in 2016
Baltic Geodetic Congress (BGC Geomatics). IEEE, 2016, pp. 34–39.

[8] F. Reclus and K. Drouard, “Geofencing for fleet and freight manage-
ment,” in 9th International Conference on Intelligent Transport Systems
Telecommunications. IEEE, 2009, pp. 353–356.

[9] J. Haofeng and G. Xiaorui, “Wi-Fi secure access control system based
on geo-fence,” in IEEE Symposium on Computers and Communications.
IEEE, 2019, pp. 1–6.

[10] S. Johnson, A. Petzen, and D. Tokotch, “Exploration of detect-and-
avoid and well-clear requirements for small UAS maneuvering in an
urban environment,” in 17th AIAA Aviation Technology, Integration, and
Operations Conference, 2017, p. 3074.

[11] NASA, “NASA Langley’s Safeguard system for UAVs aims to
take flight,” 2017, https://www.nasa.gov/langley/business/feature/
nasa-langley-s-safeguard-system-for-uavs-aims-to-take-flight/
[Accessed: 9th June 2021].

[12] ArduPilot Project, “ArduPilot,” 2021, https://ardupilot.org/ [Accessed:
9th June 2021].

[13] Dronecode, “PX4 autopilot: Open source autopilot for drones,” 2021,
https://px4.io/ [Accessed: 9th June 2021].

[14] Cleanflight, “Cleanflight,” 2021, http://cleanflight.com/ [Accessed: 9th
June 2021].

[15] Emlid, “Navio2 autopilot HAT for Raspberry Pi,” May 2020, https://
emlid.com/navio [Accessed: 30th June 2021].

[16] T. Betaflight, “Betaflight,” 2021, https://betaflight.com/ [Accessed: 9th
June 2021].

[17] T. Gurriet and L. Ciarletta, “Towards a generic and modular geofencing
strategy for civilian UAVs,” in International Conference on Unmanned
Aircraft Systems. IEEE, 2016, pp. 540–549.

[18] M. N. Stevens, H. Rastgoftar, and E. M. Atkins, “Specification and
evaluation of geofence boundary violation detection algorithms,” in
International Conference on Unmanned Aircraft Systems. IEEE, 2017,
pp. 1588–1596.

[19] F. Bélair, “Everything you always wanted to know about alpha shapes but
were afraid to ask,” 1998, http://cgm.cs.mcgill.ca/∼godfried/teaching/
projects97/belair/alpha.html [Accessed: 10th June 2021].

[20] Articque, “C&D and Articque Platform,” 2020, https://www.articque.eu/
news/new-features-february-18th-2020/ [Accessed: 8th June 2021].

[21] X. Chen and X. Chen, “The UAV dynamic path planning algorithm
research based on Voronoi diagram,” in 26th Chinese Control and
Decision Conference. IEEE, 2014, pp. 1069–1071.

[22] Y. V. Pehlivanoglu, “A new vibrational genetic algorithm enhanced with
a Voronoi diagram for path planning of autonomous UAV,” Aerospace
Science and Technology, vol. 16, no. 1, pp. 47–55, 2012.

[23] S. A. Bortoff, “Path planning for UAVs,” Proceedings of the American
Control Conference, vol. 1, no. 6, p. 364, Oct. 2000.

[24] J. Castells, “Alpha shape with Voronoi diagram using R,” 2012,
https://jcastellssala.com/2012/04/16/shape-generation-with-r/alpha
shape vornoi 01/ [Accessed; 9th June 2021].

[25] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-fidelity visual
and physical simulation for autonomous vehicles,” in Field and Service
Robotics. Springer, 2018, pp. 621–635.

[26] K. E. Bellock, “Alpha shape toolbox,” 2021, https://pypi.org/project/
alphashape/ [Accessed: 5th July 2021].

[27] Raspberry Pi Foundation, “Raspberry Pi 3 Model B,” 2021, https:
//www.raspberrypi.org/products/raspberry-pi-3-model-b/ [Accessed: 6th
July 2021].

[28] Erle Robotics, “Introduction to Erle Robotics documentation,” Feb.
2019, http://docs.erlerobotics.com/simulation/intro [Accessed: 2nd July
2021].

[29] OpenStreetMap contributors, “OSM SWOT – OpenStreetMap Wiki,”
Wikipedia, 2021, https://www.openstreetmap.org [Accessed: 5th July
2021].

[30] QGIS Project, “QGIS – A Free and Open Source Geographic Informa-
tion System,” 2021, http://qgis.osgeo.org [Accessed: 6th July 2021].

https://www.dji.com/uk/flysafe
https://www.nasa.gov/langley/business/feature/nasa-langley-s-safeguard-system-for-uavs-aims-to-take-flight/
https://www.nasa.gov/langley/business/feature/nasa-langley-s-safeguard-system-for-uavs-aims-to-take-flight/
https://ardupilot.org/
https://px4.io/
http://cleanflight.com/
https://emlid.com/navio
https://emlid.com/navio
https://betaflight.com/
http://cgm.cs.mcgill.ca/~godfried/teaching/projects97/belair/alpha.html
http://cgm.cs.mcgill.ca/~godfried/teaching/projects97/belair/alpha.html
https://www.articque.eu/news/new-features-february-18th-2020/
https://www.articque.eu/news/new-features-february-18th-2020/
https://jcastellssala.com/2012/04/16/shape-generation-with-r/alpha_shape_vornoi_01/
https://jcastellssala.com/2012/04/16/shape-generation-with-r/alpha_shape_vornoi_01/
https://pypi.org/project/alphashape/
https://pypi.org/project/alphashape/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
http://docs.erlerobotics.com/simulation/intro
 https://www.openstreetmap.org
http://qgis.osgeo.org

	Introduction
	Geofencing Methods
	Overview and Setup
	Geometric Algorithms
	Evaluated Method

	System Workflow
	Implementation
	AirSim Experiments
	Navio2 Drone Platform
	Geofencing Database

	Evaluation
	Conclusion
	References

