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ABSTRACT
We present BlobSnake, a casual game designed to help
generate new feature representations in the context of Human
Activity Recognition. Feature selection is an essential task
to be completed in the context of developing any non-
trivial activity recognition system for a new set of activities.
Presently, using anything other than a set of standard features
requires a considerable amount of effort to be expended
upon expert driven algorithm development. BlobSnake is an
alternative approach which uses direct interaction with real
sensor data by non-experts in order to develop additional
features, thus lowering the cost and expertise otherwise
required to produce more effective recognition performance.
Our experiments demonstrate that our method improves upon
the state of the art performance of standard features in a
challenging recognition scenario.
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INTRODUCTION
The field of wearable computing has grown over the
past decade to now encompass systems that automatically
recognise human behaviour in real time. This progress
has arisen from developments in the field of Human
Activity Recognition (HAR). HAR is the process of
transforming sequential data, primarily from inertial sensors
(e.g accelerometers and gyroscopes), into an indication of
which specific type of activity a person is undertaking at a
given period in time. Over the course of the past decade, HAR
has progressed from the detection and classification of very
simple ambulatory motion (determining between walking,
standing still, and running) [3] onto an rapidly increased
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Figure 1. The BlobSnake game interface. The player draws a shape
which is designed to represent the group of blobs on the left better than
those on the right. Each colour of blob is drawn from a different class,
whilst the blobs themselves are transformed deterministically from a
given channel of raw sensor data.

number of activities and special user-groups, including
specific disabilities (e.g. [2, 25, 1, 12]), and even animal
based activities [22, 16, 29].

The technical development of a new HAR system is often
a burdensome endeavour, especially in cases where a high
recognition accuracy is required. Asides certain relatively
trivial recognition problems, a scenario arising from a specific
activity dataset usually requires the tailored development and
training of a HAR system. The core parts of this process
involves collecting and annotating a activity dataset, before
an HAR expert then develops a specific feature representation
that will work effectively for that given problem. This work
is focussed upon the latter challenge - i.e. developing this
specific feature representation.1

In the near future, we will require an ever increasing
number of HAR systems which focus upon more technically
challenging HAR problems. The context of disability
represents a particularly iconic illustration of why this is
so, in that it presents the need to develop a broad range
of new systems which recognize activities that relate to
specific actions related to a given disability (e.g. as in [10]),
which in turn demands a wider range of trained recognition
systems. Moreover, there is now a renewed emphasis
upon recognising individual gestures, which are particularly
challenging activities to recognise due to the short time period

1For an investigation aimed towards addressing the former concern
through annotation correction, see [20].
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Figure 2. The standard ‘sliding window’ approach used for human activity recognition. This begins with sensor data, which is partitioned into windows
(typically these are 1 second long and with a 50% overlap, although this can vary in different application contexts). Each window is fed into the feature
function in turn. The feature representation that results is then fed into the classifier which returns a label (which is the specific activity the system
thinks the user is currently doing) for each window.

in which they actually occur (with events often lasting a
fraction of a second) and the more subtle distinctions between
activity classes [7].

BlobSnake (Figure 1.) is a casual mobile game which has
been developed in order to assist in creating new feature
representations. The game mechanic is based upon drawing
abstract shapes representing the raw sensor data depicted
in the game itself. Our innovation is the development of
a performance metric which can be used to both motivate
gameplay and serve as an effective feature for improving
activity recognition performance. Importantly, this allows
lay users to effectively replace existing HAR experts, thereby
enabling a broader range of HAR systems to be developed
(within existing economic constraints).

There already exist ‘plug and play’ feature representations
which do not require the use of a HAR expert, most notably
the ECDF [11] when used as part of a standard sliding
window recognition pipeline. We show that BlobSnake is
a means towards improving upon the performance of these
standard features, using the challenging Opportunity Dataset
to demonstrate a substantive improvement in recognition
performance [7]. The result is a small step towards
moving HAR on from being a purely expert activity, onto
a participatory one in which the general public becomes

involved as part of the process of developing new HAR
systems.

BACKGROUND AND RELATED WORK

The Process of Human Activity Recognition
In order to understand the rational behind BlobSnake, we
explain the anatomy of a sensor-based Human Activity
Recognition system. HAR generally involves the adaption
of traditional machine learning algorithms so that they can
be applied to sequential sensor data. In practise, this
usually means deriving a feature representation and extraction
framework, before then applying this to a static classifier.
In this setting (there are alternative approaches towards
developing a HAR system, although for practical reasons we
focus upon the more usual approach we outline in Figure 2)
the main focus and challenge is developing a translation of
the data into a suitable form for one of these classifiers.

Most HAR systems rely upon a sliding window approach
(overviewed in Figure 2), where features are computed
using a standard framework for a fixed window in time
(normally a matter of a few seconds), which ‘slides’ along
the data. In a deployed HAR system, there are four stages:
collection of a signal, its subsequent division into windows,
feature computation and classification into a specific set of
activities. The signal would usually come from one or
more inertial sensors (accelerometers and gyroscopes), before



Figure 3. An overview of the core development process widely used for
creating a new HAR system. First the dataset is usually divided into
three datasets, one used to train the classifier, and two to evaluate the
recognition performance of a system. The developer then iteratively
develops and trials a range of feature representations, with a selection
of classifiers, noting the recognition performance each time on the test
set. Once the desired recognition performance is reached, the given
feature representation and classifier combination is selected, before
being evaluated on a separate cross-validation dataset to reach a final
recognition performance figure.

being divided into windows. Each window would then
usually have a deterministic feature function applied to it,
with the results then being fed into a standard classifier.

BlobSnake is designed to assist with one part of the technical
development of a HAR system, namely the development
of a feature representation function. Indeed, once a
dataset has been collected and annotated, and a sliding
window approach has been adopted, there still remains the
need for a feature representation to be developed, making
BlobSnake potentially useful in these cases, too, then
feature representation is the core technical task that needs
to be completed by a HAR expert, because it would be
unreasonable (and impractical) to develop a new classifier for
each given HAR problem. Figure 3 shows the flow of this
process, and the general pattern followed by HAR experts in
developing their systems.

Gameification and Crowdsourcing
BlobSnake is not the first effort aimed at gamefying (or
indeed crowdsourcing) Human Intelligence Tasks. The most
prominant examples are Galaxy Zoo [6] which focusses
upon pattern identification in Astronomy, and Fold-It [8],
which applies gameification to protein folding, and suggests
solutions for future evaluation for researchers. Both
platforms have users which number in their millions, and
have produced a significant volume of real world results.
Perhaps most importantly, they step beyond crowdsourcing,
having widely engaged the general public as citizen scientists,
who not only help make meaningful contributions to science,
but also have the opportunity to understand and become
enthused by scientific research as an end in and of itself.

Some perhaps lesser known efforts focus upon the Machine
Learning context. These range from works designed to
improve search algorithms [21], onto efforts that involve
interaction with artificial chemistries [14]. Von Ahn and
Dabbish [30] go as far as to provide detailed design guidance
for systems in this space, which emphasises the benefits of
gameification, moving from a mechanised approach to one
that actually engages the ’crowd-worker’. These works have
also had an impact in engaging amateur scientists, albeit on a
smaller scale relative to their more well-known counterparts.

There have been some efforts which have aimed at providing
an improved HAR system [23, 24]. However, these are
limited in that they are not aimed at developing a final
recognition system, but instead use the crowd to partially
replace it in real time. By contrast, BlobSnake is focussed
upon helping to develop a system that can subsequently be
entirely automated, and thus can be deployed efficiently in a
wide range of automated contexts. Neither does Blobsnake
require a large crowd (and a live internet connection to
connect a user to them), or indeed a crowd at all - because
of the small size of HAR datasets - the existing system only
requires a few hours of human interaction. This has an
advantage of allowing its use without any difficulty in existing
ethics regimes, because there is no need to release the data to
a ‘public crowd’. Thus, BlobSnake should be thought of as
an engaging interface that can be used to assist in developing
new HAR systems.

Gameification is naturally founded upon creating genuinely
enjoyable gaming experiences. As Huizinga notes [13], why
would you play a game if it is not fun? The foundational
book by Salen and Zimmerman [27] provides a detailed
and longstanding set of design patterns and insights widely
used within the games development community. This is
complemented by a wide range of literature which explores
aspects of play. Juul [17] provides an engaging exploration
of how the separation between the interface (or controls)
used for a gaming experience and the gameplay itself is an
artificial distinction, and provides suggestions upon how to
make the controls an integral part of the gaming experience
instead. Cairns et al [5] provide an overview of immersion
- which might be loosely described as engagment - and the
research over the previous decade explaining how this varies
depending upon certain elements of a gaming experience. All
of this research, was drawn upon when designing BlobSnake,
with an emphasis upon ensuring that the gaming experiences
is as enjoyable as possible.

GAMEPLAY
Before explaining the underlying algorithm, it is worth
(briefly) overviewing the gameplay of BlobSnake and some
of its salient design features. An overview of the user
interface can be found in Figure 4. The core idea is that
player is presented with a number of blobs, each of which
represents a single channel from a window of sensor data (see
Figure 5 for how they are generated). The left hand side (and
colour) represents one group, whereas the right hand side
(with a different colour) represents another. The goal is for



Figure 4. An overview of the core gameplay features in BlobSnake

Figure 5. The stages of mapping a from a window of data (1). The process works on a channel by channel basis (2). In (3) a gradient is computed before
being added to the data (4) in order to make the last sample equal to the first sample. The data is then transformed by a computed scale factor in Eq.
1. (not shown), before being rotated to join end to end (5) where the black line indicated where A and B (from (4)) have been joined together.

the player to draw a shape around the central dot that fits one
group of blobs better than the other.

There are some significant game play elements (the full
technical detail is provided later within this paper) which help
create a sense of engagement on behalf of the player. First,
there is a fitting algorithm that is applied to the shape and each
individual blob in turn. The average difference in fit between
the two groups is computed; the greater this is, the more the
score is increased by. Second, the game also includes a life
bar which increases or decreases based upon a combination
of the time taken (over a minimum threshold) to draw a blob
and the result of that fitting algorithm.

BlobSnake draws upon the notions of challenge and
progression, which are generally recognised as being
necessary for facilitating effective gameplay [27]. Some of
the challenge is within the controls of the game (adopting
Juul’s tactic here of making the controls an integral part of
the gameplay experience [17]), namely the task of drawing
a shape (which appears as it is drawn) in the confined
space presented by BlobSnake. From the perspective of
progression, BlobSnake also involves an increasing number
of blobs displayed on each side, and eventually there are
invisible blobs which are taken into account in the ‘difference
of fit’ calculation and also scored. In addition, there is the
usual (for casual games) score-board included to foster a

sense of competitiveness amongst players, with the goal of
motivating continued play.

These gameplay elements are not only chosen to create an
engaging gaming experience. They are also included to
promote behavior that is likely to lead to effective features
being generated through the game. In machine learning
(including HAR), there are the concepts of overfitting and
underfitting. These effectively correspond to producing
results that too closely mimic the training data and thus
do not generalise (i.e. overfitting) or alternatively, have
little closeness to the data itself (i.e. underfitting) and
thus represents little useful information that can be used for
classification. In practice the challenge with BlobSnake is
overfitting rather than underfitting, because players might
adopt a strategy of directly drawing one of the blobs. The
time limiting function, together with the small screen size,
are designed to minimize this problem. Moreover, the fitting
metric should have the effect of limiting underfitting, because
this is likely to reduce the likelihood of the player producing
a poor fit (in that they will be penalised in both life-bar levels
and score for doing so).

BLOBSNAKE ALGORITHMS
For the game itself, there are two key technical aspects. The
first is how the sensor data is mapped into the blobs that



Figure 6. This figure demonstrates the conversion of data to polygons.
Starting from individual touch points (1), onto selcting equally spaced
particles moving out from a central point (2), producing a polygon (3).
Note that this process is the same as taking the convex hull of the point
cloud.

appear in the game itself, from an individual window and
channel of sensor data. The second is how the fitting energies
- which we use to drive the scoring mechanism in the game
itself - are calculated and used in order to determine the
efficacy of the ’snake’ drawn by the player. Both of these
are explained below. As will be seen later in this article, these
will also be fundamental components of the HAR process,
with identical calculations being used at the feature selection
stage.

Generating Blobs
The first core technical consideration is how to map real
sensor data meaningfully into the gamespace as a ‘blob’.
This is partially based upon our previous work [19], which
presented activity data directly to users and found a circular
approach to signal representation was effective as a means of
communicating this data in a meaningful way. We implement
this using a linear transform illustrated into Figure 5 in order
to make the beginning and the end of the recognition data
join smoothly to form a ‘blob’. That is, for each datapoint pi
(where pA p0 is the first point of that window, pB is the end
point, and N is the number of points in the blob), we compute
the new value p′i :

p′i = pi −
i(pB − pA)

N − 1
(1)

The data frame F (this is equivalent to a single channel - or
axis - of sensor data from a sliding window) is then scaled
using the following scale factor (where ∆F = |Fmin − Fmax|):

S F =

{
1/|∆F| if|∆F| ≤ 2
log(1/|∆F|) otherwise

(2)

This formula has the advantage of removing the mean (so our
players do not reproduce this as a feature), whilst preventing
signal noise being greatly amplified as to appear meaningful.

Evaluating Snakes in Real Time
In computer vision, a snake [18] is a technique which uses
fitting energies in order to detect shapes, with the aim of
minimizing the fitting energy. We adapt this concept to
measure how faithfully a ’snake’ from our game fits an
individual blob, with the ’snake’ being instead the shape
drawn by the player. First, the touch inputs are processed by
finding the values closest to the central dot (see Figure 1.),
with a point generated for each segment that corresponds to a
data point (in our case we take 1 point for every 12 degrees,
making 30 in total). We illustrate in Figure 6 the first step of
the process, converting touch points into a polygon.

The blob is actually comprised of a discrete set of points,
or samples, in the sensor data. Thus, both the blob and the
snake are polygons of the same size (or can be made so
by simple interpolation on the blob). We therefore measure
the deformation by normalising each polygon to have a
length of one, and then computing the difference in each
segments length. This provides features that can be used
for a classifier, where each snake is effectively deformed to
fit a ‘blob’. The relative segment lengths for the original
snake are computed, before the energy being computed by
summing each segment’s deformation. This is computed for
every possible rotation of the snake (relative to the blob),
with the minimum value selected as the final fitting energy.
Mathematically this is defined in the following equation:

E = min
S r

n∑
seg=1

abs
(

Lseg∑
Lseg
−

L′seg∑
L′seg

)
(3)

In the above, S r is the snake rotated to begin at point r, Lseg
is the original segment length and L′seg is the segment length
after the snake has been fitted to the blob (which is always
equal to the relevant segment length in the blob itself).

TECHNICAL EVALUATION
Having detailed the game and how snakes and blobs
are generated, the next step is to consider whether this
can be usefully utilsed in a HAR context. Given this
submission’s focus upon the interface, we do not emphasise
the development of novel algorithms in this evaluation,
instead opting for a simple filtering and grid search approach
(detailed below).



From Snakes to Features
We draw upon the blob generation and snake fitting metrics
defined in the game itself. First, every data-frame from each
channel (in the dataset) is converted into a blob, and each
snake is evaluated across all the blobs for each class using
exactly the same method as above. Thus we re-use the fitting
energy from the game metric, but this time the indivdiual
snake is a feature function, applied to channels of sensor data
first transformed into blobs. Because there is a likelihood of
a large amount of erroneous solutions generated by our users,
we adopt the approach from FoldIt [8] of initially scoring user
inputs, taking only the most promising generated ‘snakes’
forward in order to reduce our dataset. To do this, we conduct
the below calculation for each snake s in turn, where µc and
σc are respectively the mean and standard deviation of class
c and then selecting those N snakes which are the highest
scoring to further evaluate:

sscore =
abs(µ1 − µ2)
σ1 + σ2

(4)

Note that this function is defined to maximize the separability
of the snake with respect to different classes (and thus the
usefulness of a given snake as a feature), by looking the
for the highest difference in means, whilst normalizing for
standard deviation.

We then presume that the best performing standard feature
representation (out of those traditionally used) has already
been identified for our data. This is accomplished by using
a standard framework as described in [4], with this being
trialled on a wide range of classifiers and standard feature
representations. The goal of BlobSnake, just as with the HAR
expert in the traditional approach, is to add complementary
features that improve upon the standard features, rather
than to replace the standard features. Thus before our
experiments, the best performing standard features were
identified - this was the ECDF with 10 coefficients (more
co-efficients did not improve - or substantively reduce -
recognition performance). A grid search optimisation is then
performed on the training data to determine which snakes
offer the best raw performance (in accord with the formula
above) to take forwards, by concatenating them individually
- to the highest performing (standard) feature representation.
If there are two or more features which individually improve
performance across different sensor channels that also exceed
a given threshold, T , then these combinations are also trialled.
The final selection is the one with the greatest recognition
performance.

Dataset
For our evaluation, we use the challenging Opportunity
Dataset [7], which is one of the most widely recognised
datasets for benchmarking HAR systems. Opportunity
comprises a number of short time activities in a domestic
environment, most of which are mundane gestural actions,
such as opening a specific door (part of the associated
challenge with this dataset involves distinguishing the use
of one door from another), or activating a toggle switch.
Notably, this is the only dataset which is currently publicly
available which is also suitably challenging (and large enough

to enable an appropriate evaluation); other datasets already
obtain very high recognition performance using standard
features, and thus BlobSnake would have little utility in
that context. Ultimately, BlobSnake is forward looking, and
aimed at the more challenging HAR problems which are
beginning to arise going forwards, and thus it would make
little sense to trial it on problems that are already solved.

The Experiments
We selected the five most challenging class pairs in
Opportunity to form five separate experiments. The goal
was to demonstrate the viability of our approach against
an extremely challenging HAR problem. These class pairs
were identified by the highest pairwise confusion under the
standard sliding window framework, with the usual 1 second
windows and 50% overlap (this was established as the default
approach in [15]). In order to identify the best performing
standard feature representation, we trialed 1NN, 3NN, C4.5
and Naı̈ve Bayes as classifiers, against the standard statistical
features, ECDF [11], PCA, and Fourier coefficients in turn
(with 5,10,15,20,25 and 30co-efficients) on the Opportunity
dataset in totality.

This resulted in 45 individual blob-snake games (our
configuration of Opportunity has 9 sensor channels, because
we focus upon the three accelerometer sensors relating to
the dominant wrist). The case with 1NN and the ECDF
representation provided the greatest recognition performance,
and the improvement saturated with 10 co-efficients per
channel, which then served as our basis for expanding upon.
For our experiments 50% of the data from each class pair
were randomly selected to be deployed within the game as a
training dataset, with the players never seeing any of the test
data to ensure a robust evaluation. Because there is effectively
only one system on trial to be deployed (BlobSnake), we
dispense with the usual cross-validation dataset that we would
otherwise would have been forced to use.

We then recruited eight participants to play BlobSnake, all
of whom were ‘naı̈ve’ with respect to HAR. Our participants
were recruited via a student volunteer mailing list and offered
an inducement of £10. They were asked to play the game for a
period of around 45 minutes, with a brief explanation offered
at the outset of how the game operated (including a tutorial
in the game itself), in order to generate user data (and thus
’snakes’). After the ‘snakes’ were collated in totality from
the laboratory studies, they were processed using the post-
processing framework highlighted in the foregoing section
(with a threshold of T = 0.5% and filtering at the level of
N = 10 as described above).

Results
We report the results in Table 1, with the McNemar test
used with the appropriate statistical corrections to this context
(Yates and Bonferroni), as an improvement against 1NN with
10 ECDF coefficients (namely the best possible performance
with standard features). The numerical results are comparable
with other research efforts (e.g. [26, 11]) designed to improve
upon state of the art recognition systems in the HAR context.
Unfortunately, these papers do not normally follow up with a



Experiment No Class A Class B Original
Performance
(% Accuracy)

Improved
Performance
(% Accuracy)

Total Improvement
(% Accuracy)

P-value

Experiment 1 Toggle Switch Open Dishwasher 67.24 68.10 0.86 0.241
Experiment 2 Close Dishwasher Close Fridge 72.34 72.99 0.65 0.343
Experiment 3 Open Door 2 Close Drawer 3 73.90 74.48 0.58 0.422
Experiment 4 Open Drawer 1 Open Drawer 2 73.97 74.19 0.22 0.683
Experiment 5 Close Drawer 1 Open Door 1 76.99 78.87 1.88 0.021

Table 1. The results from Blob Snake; with a numerical improvement in all experiments beyond the state of the art, and a statistically significant
improvement in Experiment 5 (even with Bonferroni Correction). Notice that this improvement is in the usual range for new approaches towards HAR,
making this a substantial development in this field.

Figure 7. Player statistics. For each player, we provide the mean and standard deviation of the number of blobs generated within the game, as well
as the total number of games played by individual players. As can be seen, these vary substantially between individual players, suggesting different
approaches towards gameplay, and player skill across our players.

statistical analysis (e.g. [28]), so we cannot easily compare
with them in that regard.

In Figure 7 we also report the statistics in relation to the
gameplay for each player. As can be seen, there is a great
degree of variance in respect of both playstyle and ability,
given the number of snakes generated, and the standard
deviations that results. This is in effect what the game
was designed to achieve, with the gameplay features being
selected to encourage a diversity in play-style, and thus the
data generate. It is also notable that it is unlikely that further
play would improve performance, both due to the number of
snakes generated (in excess of 8000), and the diversity within
that data.

DISCUSSION AND CONCLUSION
Can human interaction with a casual game displace the efforts
of HAR experts? With BlobSnake, we demonstrate that this
is likely to be possible to accomplish in a meaningful fashion.
In our experiments, we found that BlobSnake successfully
improves activity recognition performance, doing so in
a statistically significant fashion for one data-pair (and
numerically for others) on a highly challenging HAR dataset.
In doing so, we have stepped towards reducing the number of
systems that require active development, whilst opening up a
new domain for research for the HAR community.

This work was in effect a feasibility study for this approach,
which we hope to expand upon in further work. As such,

there is a wide range of further steps that might be trialed in
order to create an improved system. This might include the
development of more powerful post-facto algorithm which
better makes use of the snake data, an investigation of
different means of data representation, and thus different
‘blobs’ (e.g. representing multiple channels of sensor data
in a single artifact, or using time delay embeddings [9]).
Further work may also involve taking into account play
characteristics (for example, the time taken to generate each
blob by the player, or the player’s current score) when
selecting which blobs are used.

HAR systems increasingly represent challenges involving
privacy, and it is important that this issue is effectively
explored, so people can make informed decisions about how
and where they use wearable systems that contain inertial
sensors. This is an important avenue for further research
which we also hope to explore in the future.
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